Orientations

Describe the construction of the tangent bundle $\pi: TM \to M$ on a manifold M.

- What are the fibers, $\pi^{-1}(p)$?
- ▶ What are the charts for *TM*?
- If (U, h) and (V, k) are charts on M, what is the transition function from π⁻¹(U) to π⁻¹(V) on TM?

Reminder

Don't forget to advertise the math/stat colloquium!

Orientation of a vector space

Let $\mathcal{B}: v_1, \ldots, v_n$ and $\mathcal{C}: w_1, \ldots, w_n$ be ordered bases for a vector space V.

Define a linear function $\phi: V \to V$ by $\phi(v_i) = w_i$ for all *i*.

Say $\mathcal{B} \sim \mathcal{C}$ if det $\phi > 0$. In this case, we say \mathcal{B} and \mathcal{C} have the same orientation.

The relation \sim is an equivalence relation on the set of ordered bases for V.

An equivalence class for \sim is an *orientation* of V.

The *positive* orientation on \mathbb{R}^n is the equivalence class of the standard ordered basis.

Two interesting properties of the determinant of a matrix A: $|\det A|$ gives volume and sign(A) gives the *orientation* of the rows (or columns) of A.

Orientation of a vector space

Which of the following have the same orientation?

Orientation of a manifold

For each $p \in M$, let \mathcal{O}_p be an orientation if T_pM .

A collection of orientations $\mathcal{O} = \{\mathcal{O}_p\}_{p \in M}$ is locally coherent if for all $p \in M$, there exists a chart (U, h) at p such that the isomorphism $T_q M \xrightarrow{\sim} \mathbb{R}^n$ induced by (U, h) sends \mathcal{O}_q to the positive orientation of \mathbb{R}^n for all $q \in U$.

Recall the local charts on TM:

$$\begin{aligned} \amalg_{p \in U} T_p M &= \pi^{-1}(U) \xrightarrow{\sim} U \times \mathbb{R}^n \\ v \in T_p M \mapsto (p, v(U, h)) \end{aligned}$$

Restricted to the fiber $\pi^{-1}(p)$:

$$T_p M \xrightarrow{\sim} \{p\} \times \mathbb{R}^n \simeq \mathbb{R}^n$$

 $v \mapsto (p, v(U, h)) \mapsto v(U, h).$

An oriented manifold is a pair (M, \mathcal{O}) where $\mathcal{O} = \{\mathcal{O}_p\}_{p \in M}$ is a locally coherent collection of orientations \mathcal{O}_p for each tangent space T_pM .

Take chart (U, h) at p required by local coherence, and take chart (V, k) at q required by local coherence. Suppose that $s \in U \cap V$. Is there a possible contradiction? No.

$$\mathbb{R}^n \xrightarrow{\mathcal{O}_s} T_s M \xrightarrow{dh_s} \mathbb{R}^n \xleftarrow{dk_s} T_s M \xleftarrow{\mathcal{O}_s} \mathbb{R}^n.$$

Suppose *M* and *N* are orientated manifolds. Then a diffeomorphism $f: M \to N$ is orientation preserving if $df_p: T_pM \to T_{f(p)}N$ is orientation preserving for all $p \in M$.

This means that for all $p \in M$, applying df_p to a representative for \mathcal{O}_p on M gives an ordered basis in $\mathcal{O}_{f(p)}$ on N.

Orienting atlas

An atlas $\mathfrak{A} = \{(U_i, h_i)\}_{i \in I}$ is orienting if det $J(h_j \circ h_i^{-1}) > 0$ for all $i, j \in I$.

An orienting atlas induces an orientation on M: for each $(U_i, h_i) \in \mathfrak{A}$, orient $T_p M$ using

$$T_p M \xrightarrow{\sim} \mathbb{R}^n$$

 $v \mapsto v(U_i, h_j).$

Choose the ordered basis on T_pM that is sent to the standard basis for \mathbb{R}^n .

Compatibility follows from the fact that det $J(h_j \circ h_i^{-1}) > 0$.

Question. Does every orientable manifold have an orienting atlas? (See next page.)

Question. Does every orientable manifold have an orienting atlas?

Answer: Yes. If *M* is orientable, the it has a locally coherent collection of orientations $\mathcal{O} = \{\mathcal{O}_p\}_{p \in M}$. See the definition of *local coherence*. It guarantees the existence of certain charts, and these charts will form an orienting atlas.

Both bases having positive orientation implies det $J(k \circ h^{-1}) > 0$.

Claim. Let u_1, \ldots, u_n and w_1, \ldots, w_n be positively oriented bases of \mathbb{R}^n , and let J be an $n \times n$ matrix such that $\mathbb{R}^n \xrightarrow{J} \mathbb{R}^n$ sends u_i to w_i for all i. Then det(J) > 0.

Proof. Let A, resp. B, be the matrices with the u_i , resp. w_i , as columns.

We have the commutative diagram

Then, $JA = B \Rightarrow \det(JA) = \det(B) \Rightarrow \det(J)\det(A) = \det(B)$. Etc. **Proposition.** A manifold with an atlas consisting of a single chart is orientable.

Proposition. If M has an atlas consisting of two charts (U, h) and (V, k), then M is orientable.

Proof. If det $J(k \circ h^{-1}) < 0$, then replace $k = (k_1, \ldots, k_n)$ by $(-k_1, k_2, \ldots, k_n)$. (Compose k with the linear mapping sending e_1 to $-e_1$ and fixing the other standard basis vectors. That will change the sign of the determinant.)

Example. The *n*-sphere, S^n .

Example. What about the Möbius strip? What's wrong with the statement of the Proposition?

We need to assume that $U \cap V$ is connected. Why?

Theorem. Let $n = \dim M$. Then M is orientable if and only if it has a nonvanishing *n*-form $\omega \in \Omega^n M$.

Sketch of proof. (\Leftarrow) Say $\omega \in \Omega^n M$ is nonvanishing. Let \mathfrak{A} be any atlas. We may assume that for all $(U, h) \in \mathfrak{A}$, we have the corresponding local form $\omega = f \, dx_1 \wedge \cdots \wedge dx_n$ with f > 0 on U. (Why? If not, change h by negating its first component, as before.)

Claim: the resulting atlas is orienting. Idea: suppose $\omega = g \, dy_1 \wedge \cdots \wedge dy_n$ with respect to another chart (V, k). How does the local form of ω change?

Answer: $g dy_1 \wedge \cdots \wedge dy_n$ will pull back to

 $\det(J(h \circ k^{-1})^t)g(h \circ k^{-1})\,dx_1 \wedge \cdots dx_n = f\,dx_1 \wedge \cdots \wedge dx_n.$

Since f > 0 and g > 0, it follows that det $J(k \circ h^{-1}) > 0$.