Vector bundles

Miscellaneous

- ▶ The quiz material for Wednesday is posted.
- Reading for today: Section 6.
- Reading for tomorrow: Section 7.

Tangent bundle on \mathbb{R}^n

fiber at p: $\pi^{-1}(p) = \{p\} \times \mathbb{R}^n \simeq \mathbb{R}^n = \text{vector space}$

For example, $2(\{p\} \times u) + 3(\{p\} \times v) = \{p\} \times (2u + 3v)$.

Section of tangent bundle

Question: Why can we identify a section with a "flow" in \mathbb{R}^n ? So a section of the tangent bundle is a vector field.

Trivial bundle of rank k

 $\pi(m,v)=m$

Trivial bundle of rank k

$$\pi(m,v)=v$$

$$U \times \mathbb{R}^{k} \xrightarrow{h \times \mathrm{id}} h(U) \times \mathbb{R}^{k} \qquad \subseteq \mathbb{R}^{n} \times \mathbb{R}^{k}$$
$$\downarrow^{\pi} \qquad \downarrow^{\pi} \qquad \qquad \downarrow^{\pi}$$
$$U \xrightarrow{h} h(U) \qquad \subseteq \mathbb{R}^{n}$$

General vector bundle on M of rank k

(Conditions appear on next slide.)

General vector bundle $\pi \colon E \to M$ of rank k

Conditions:

(1) For all $p \in M$, the fiber $E_p := \pi^{-1}(p)$ is a k-dimensional vector space.

(2) Locally trivial: for all $p \in M$, there exists a neighborhood U of p and a diffeomorphism ϕ_U such that the following diagram commutes:

(3) $\phi_U \colon E_p \to \{p\} \times \mathbb{R}^k$ is a linear isomorphism.

Sections

global section local section

Questions: Do sections always exist? Do nonzero sections always exist?

Extending sections

Application of bump functions, on blackboard.

Motivation for tangent space

Formula for the length of a curve $\alpha \colon (a, b) \to \mathbb{R}^n$:

$$\operatorname{len}(\alpha) = \int_{a}^{b} |\alpha'(t)|$$
$$= \int_{a}^{b} \sqrt{\alpha'(t) \cdot \alpha'(t)}$$
$$= \int_{a}^{b} \sqrt{\langle \alpha'(t), \alpha'(t) \rangle}$$
$$= \int_{a}^{b} \sqrt{\langle \alpha', \alpha' \rangle_{t}}$$

If we replace \mathbb{R}^n with an arbitrary manifold M, where should $\langle \ , \ \rangle_t$ live?

Tangent bundle

$$TM = \coprod_{p} T_{p} M$$

$$\pi \downarrow$$

$$M$$

We will talk about the manifold structure of TM next time. We would like:

$$\langle , \rangle_p \colon T_p M \times T_p M \to \mathbb{R}$$
 is bilinear and symmetric.

Therefore,
$$\langle , \rangle_p$$
 " \in " (Sym² $T_p M$)* \simeq Sym²($T_p^* M$).

We can also construct a vector bundle $\operatorname{Sym}^2(T^*M) \to M$. Then, $\langle , \rangle \colon M \to \operatorname{Sym}^2(T^*M)$ should be a section, allowing us to find lengths of curves in M.