

Quiz

Let M be a manifold, and let $p \in M$.

- 1. Let \mathcal{E}_p denote the vector space of germs of differentiable functions at p. What is $\mathcal{T}_p^{\mathrm{alg}}M$?
- 2. Let $v \in \mathcal{T}_p^{\mathrm{alg}} M$, and let \mathcal{D}_p denote the set of charts at p. Describe the corresponding element of $\mathcal{T}_p^{\mathrm{phy}} M$ under our mapping $\mathcal{T}_p^{\mathrm{alg}} M \to \mathcal{T}_p^{\mathrm{phy}} M$.

Vector space of linear functions

Let V and W be finite-dimensional vector spaces over \mathbb{R} .

Define

$$\mathsf{hom}(V,W) = \{\mathsf{linear functions}\ V \to W\}$$

with linear structure

$$(\lambda f + g)(v) = \lambda f(v) + g(v)$$

for all $f, g \in \text{hom}(V, W)$ and $\lambda \in \mathbb{R}$.

Dual space

$$V^* := \mathsf{hom}(V, \mathbb{R})$$

Example. Let $V = \mathbb{R}^3$. Then $\phi(x, y, z) = 3x - 27 + 4z$ defines an element $\phi \in V^*$.

Dual basis

A basis v_1, \ldots, v_n for V determines a *dual basis* v_1^*, \ldots, v_n^* for V^* where each $v_i^* \colon V \to \mathbb{R}$ is defined by

$$v_i^*(v_j) = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j. \end{cases}$$

Example. $V=\mathbb{R}^3$ with standard basis e_1,e_2,e_3 . We have

$$\begin{aligned} e_3^*(2,5,4) &= e_3^*(2e_1 + 5e_2 + 4e_3) \\ &= e_3^*(2e_1) + e_3^*(5e_2) + e_3^*(4e_3) \\ &= 2e_3^*(e_1) + 5e_3^*(e_2) + 4e_3^*(e_3) \\ &= 4. \end{aligned}$$

Dualization is a contravariant functor

Given a linear function $f\colon V\to W$, there is a natural induced function $f^*\colon W^*\to V^*$ define as follows: for $\phi\in W^*$, i.e., linear $\phi\colon W\to \mathbb{R}$, we let $f^*(\phi)=\phi\circ f$:

$$f^*(\phi) = \phi \circ f \colon V \xrightarrow{f} W \xrightarrow{\phi} \mathbb{R}.$$

Functoriality: (1) $\mathrm{id}_V \colon V \to V$ induces $\mathrm{id}_{V^*} \colon V^* \to V^*$, and (2) commutative diagrams are preserved:

Duality and tensors

$$ightharpoonup (V^*)^{\otimes \ell} \simeq (V^{\otimes \ell})^*$$

- ▶ Sym $^{\ell}$ $V^* \simeq (Sym^{\ell} V)^*$

$$(V^*)^{\otimes \ell} \simeq (V^{\otimes \ell})^*$$

Every element of $(V^*)^{\otimes \ell}$ is a linear combination of elements of the form $\phi_1 \otimes \cdots \otimes \phi_\ell$ where $\phi_i \colon V \to \mathbb{R}$.

Send $\phi_1 \otimes \cdots \otimes \phi_\ell$ to the element of $(V^{\otimes \ell})^*$ defined by

$$v_1 \otimes \cdots \otimes v_\ell \mapsto \phi_1(v_1) \cdots \phi_\ell(v_\ell)$$

for all $v_1, \ldots, v_\ell \in V$.

$$(V^*)^{\otimes \ell} o (V^{\otimes \ell})^* \ \phi_1 \otimes \cdots \otimes \phi_\ell \mapsto [v_1 \otimes \cdots \otimes v_\ell \mapsto \prod_{i=1}^\ell \phi_i(v_i)]$$

$$\operatorname{\mathsf{Sym}}^\ell V^* \simeq (\operatorname{\mathsf{Sym}}^\ell V)^*$$

$$Sym^{\ell} V^* \to (Sym^{\ell} V)^*$$

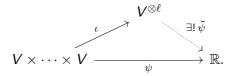
$$\phi_1 \cdots \phi_{\ell} \mapsto [v_1 \cdots v_{\ell} \mapsto \sum_{\sigma \in \mathfrak{S}_n} \prod_{i=1}^{\ell} \phi_{\sigma(i)}(v_i)]$$

$$\Lambda^{\ell}V^*\simeq (\Lambda^{\ell}V)^*$$

$$\Lambda^{\ell} V^* \to (\Lambda^{\ell} V)^*$$
 $\phi_1 \wedge \dots \wedge \phi_{\ell} \mapsto [v_1 \wedge \dots \wedge v_{\ell} \mapsto \det(\phi_i(v_i))]$

Forms

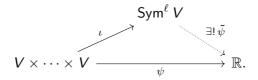
By an ℓ -form, we mean a multilinear function $\psi\colon \underbrace{V\times\cdots\times V}_{\ell\text{ times}}\to\mathbb{R}.$ By the universal property of the tensor product,



So we can identify the ℓ -form ψ with $\tilde{\psi} \in (V^{\otimes \ell})^* \simeq (V^*)^{\otimes \ell}$.

Symmetric forms

A symmetric ℓ -form, is a symmetric multilinear function $\psi\colon \underbrace{V\times\cdots\times V}_{\ell\text{ times}}\to\mathbb{R}.$ By the universal property of symmetric tensors,

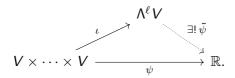


So we can identify the symmetric ℓ -form ψ with $\tilde{\psi} \in (\operatorname{Sym}^{\ell} V)^* \simeq \operatorname{Sym}^{\ell} V^*$.

Example. An inner product $\langle \ , \ \rangle \colon V \times V \to \mathbb{R}$, can be identified with an element of $\operatorname{Sym}^2 V^*$. Challenge: The ordinary inner product on \mathbb{R}^n corresponds to which element of $\operatorname{Sym}^2(\mathbb{R}^{n*})$?

Alternating forms

An alternating ℓ -form, is an alternating multilinear function $\psi\colon \underbrace{V\times\cdots\times V}_{\ell\text{ times}}\to\mathbb{R}.$ By the universal property of alternating tensors,



So we can identify the alternating ℓ -form ψ with $\tilde{\psi} \in (\Lambda^{\ell} V)^* \simeq \Lambda^{\ell} V^*$.

Alternating forms

The vector space of alternating ℓ -forms on V is denoted $\mathsf{Alt}^\ell V$.

We have the identifications

$$\mathsf{Alt}^\ell \ V \simeq (\Lambda^\ell V)^* \simeq \Lambda^\ell V^*.$$

Pullbacks

Let $L\colon V\to W$ be linear, and let $L^*\colon W^*\to V^*$ be the pullback mapping. We get

$$L^*: (\Lambda^{\ell}W)^* \to (\Lambda^{\ell}V)^*$$
$$\eta \mapsto [v_1 \wedge \cdots v_{\ell} \mapsto \eta(Lv_1 \wedge \cdots Lv_{\ell})]$$

$$\eta \colon \Lambda^{\ell}W \to \mathbb{R}$$
 and $L^*\eta \colon \Lambda^{\ell}V \to \mathbb{R}$

$$L^* : \Lambda^{\ell} W^* \to \Lambda^{\ell} V^*$$

$$\phi_1 \wedge \dots \wedge \phi_{\ell} \mapsto L^* \phi_1 \wedge \dots \wedge L^* \phi_{\ell}$$

$$L^*: \Lambda^{\ell} W^* \to (\Lambda^{\ell} V)^*$$

$$\phi_1 \wedge \dots \wedge \phi_{\ell} \to [v_1 \wedge \dots \wedge v_{\ell} \mapsto \det(\phi_i(Lv_j))]$$

Polynomials

There is an action of Sym^{ℓ} V^* on V defined by $(\phi_1 \cdots \phi_\ell)(v) = \prod_{i=1}^{\ell} \phi_i(v)$.

Example. Let $V=\mathbb{R}^3$ with standard basis e_1,e_2,e_3 . The dual basis is e_1^*,e_2^*,e_3^* . For $(x,y,z)\in\mathbb{R}^3$, we have, for example,

$$e_2^*(x, y, z) = e_2^*(xe_1 + ye_2 + ze_3)$$

= $xe_2^*(e_1) + ye_2^*(e_2) + ze_2^*(e_3)$
= y .

In general, e_i^* is the *i*-th projection function. Using the action, above, we have, for example,

$$((e_2^*)^2 e_3^*)(x,y,z) = e_2^*(x,y,z)e_2^*(x,y,z)e_3^*(x,y,z) = y^2 z.$$

For instance, $((e_2^*)^2 e_3^*)(7,4,1) = 4 \cdot 4 \cdot 1 = 16$.

Polynomials

Action of $\operatorname{Sym}^{\ell} V^*$ on V: $(\phi_1 \cdots \phi_{\ell})(v) = \prod_{i=1}^{\ell} \phi_i(v)$. We can extend this action to an action of $\operatorname{Sym} V^* = \bigoplus_{\ell \geq 0} \operatorname{Sym} V^*$ on V.

For example, consider the element $f=2(e_1^*)^2+5e_1^*(e_2^*)^2(e_3^*)\in {\sf Sym}(\mathbb{R}^3)^*.$ We have

$$f(x,y,z) = 2x^2 + 5xy^2z.$$

Point: Sym V^* is a coordinate-free way to think of polynomials acting on V. Choosing an ordered basis for V identifies V with \mathbb{k}^n and Sym V^* with $\mathbb{k}[x_1,\ldots,x_n]$.

Consider

$$L \colon \mathbb{R}^2 \to \mathbb{R}^3$$
$$(x, y) \mapsto (y, x, 2x + y)$$

Take standard bases e_1, e_2 for \mathbb{R}^2 and f_1, f_2, f_3 for \mathbb{R}^3 . Taking dual bases allows us to identify $(\mathbb{R}^2)^*$ with \mathbb{R}^2 and $(\mathbb{R}^3)^*$ with \mathbb{R}^3 .

What is the matrix representing $L^*: \mathbb{R}^3 \to \mathbb{R}^2$?

$$L \colon \mathbb{R}^2 \to \mathbb{R}^3$$
$$(x, y) \mapsto (y, x, 2x + y)$$

There is an induced mapping $L^*: \Lambda^2(\mathbb{R}^3)^* \to \Lambda^2(\mathbb{R}^2)^*$.

Ordered basis for $\Lambda^2(\mathbb{R}^3)^*$: $f_1^* \wedge f_2^*, \ f_1^* \wedge f_3^*, \ f_2^* \wedge f_3^*.$

Ordered basis for $\Lambda^2(\mathbb{R}^2)^*$: $e_1^* \wedge e_2^*$.

Choosing these bases, $L^*: \Lambda^2(\mathbb{R}^3)^* \to \Lambda^2(\mathbb{R}^2)^*$ becomes a mapping $L^*: \mathbb{R}^3 \to \mathbb{R}$. What is the matrix representing this mapping?

$$L \colon \mathbb{R}^2 \to \mathbb{R}^3$$
$$(x, y) \mapsto (y, x, 2x + y)$$

Induced mapping $L^* : \Lambda^2(\mathbb{R}^3)^* \to \Lambda^2(\mathbb{R}^2)^*$.

Images of standard basis vectors for $\Lambda^2(\mathbb{R}^3)^*$:

$$\begin{split} f_1^* \wedge f_2^* &\mapsto L^* f_1^* \wedge L^* f_2^* = (f_1^* \circ L) \wedge (f_2^* \circ L) = e_2^* \wedge e_1^* = -e_1^* \wedge e_2^* \\ f_1^* \wedge f_3^* &\mapsto e_2^* \wedge (2e_1^* + e_2^*) = -2e_1^* \wedge e_2^* \\ f_2^* \wedge f_3^* &\mapsto e_1^* \wedge (2e_1^* + e_2^*) = e_1^* \wedge e_2^*. \end{split}$$

Matrix: $\begin{bmatrix} -1 & -2 & 1 \end{bmatrix}$.

Thus, we have a commutative diagram

where

$$A = \begin{bmatrix} -1 & -2 & 1 \end{bmatrix}$$
.