Tensors



Preliminaries

» Remember the quiz on Wednesday.

» Comments on HW.
» Use \colon instead of : when defining functions:

f:U—=V
f:U—=V

» Proofs consist of complete sentences.



Left over from last time

Standard basis for T,M with respect to a chart (U, h):

(5),(5%)
ox1),  \oxa )y

T5°(M) : (a%)p = [t = hL(h(p) + te;)]

T35 (e g (Fo i) (h(p))

h
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Tensors

Three types:

» ordinary v ® w
» symmetric v - w

> alternating v A w



Example

U, V, W finite dimensional k-vector spaces
U Ve W=Span{u@veaw:ueclUywveV,we W}
where ® is “multilinear”, e.g.,
uR2v+Vview=ue2v)ew+ux Vv ew
=2uRveaw+uldVv @w.
Another example of multilinearity:

S(uvew)=0Bu)eveaw=ux(Bv)dw=u®v® (5w).



Construction of V @ W

F(V, W) = vector space with basis the symbols [v, w] where
veVandwe W.

No relations among symbols! For example,

[v+ Vv, w] #[v,w] + [V, w].



Construction of V @ W

Let T be the subspace of F(V, W) spanned by:

[v+ Vv, w]—[v,w] - [V, w]
[v,w+ w]—[v,w] —[v,w]
[Av, w] — Alv, w]
[v, Aw] — A[v, w]

forall v,ve V, w,w € W, and X € k.

Definition: V@ W = F(V,W)/T, and v@w = [v,w] mod T.



Bases

Say we have bases:

Then V @ W has basis e @ fj for 1L <i<mand1<j<n.

Therefore, dimV @ W = dim V dim W.

The same holds for tensor products of more than two vector
spaces, e.g,

dmU® V& W =dimUdimVdim W.



Example

Consider R? with standard basis e;, &. Then R? ® R? has basis:
e, e, e, ee.

Exercise: Express (2,3) ® (1,4) in terms of this basis.

True or False: (2,4) ®(1,3) = (1,2) ® (2,6).



Universal property of the tensor product

There is a bilinear mapping

VW=V W

(viw) = vew.

The tensor product V ® W is characterized (up to isomorphism
of vector spaces) by the following universal property: Given any
bilinear mapping f: V x W — U to a vector space U, there
exists a unique linear mapping h: V @ W — U such that the
following diagram commutes:

Vx W U.

Thus, the tensor product turns “bilinear mappings into linear
mappings".



Universal property of the tensor product

More generally, there is a similar commutative diagram that
relates a multilinear mapping Vi x --- x V,;, — U with a linear
mapping V1 ® ---® V, — U:

Vio---aV

/ - " Flinear

Vix--xV, 5 U

multilinear




Symmetric tensors

Vel .= vVg---QV
———

£ times
For 1 <i# j </, define

and let T" = Span{t; : 1 <i#j </(}.

Then Sym’ V := Ve T and
viov =@ @ v) € Symt V.

Exercise: In Sym?R?, compute (2,3) - (1,4) in terms of the
standard basis e, e for R2.



Symmetric tensors

If V has basis ey, ..., e, then Sym’ V has basis

{ef‘l---ea":a,-ZOforall i,and a1 + -+ a, =}

n

We have dim Sym® V = ("+§_1).



Universal property of symmetric products

Given a multilinear symmetric mapping V>*¢ — W from

the ¢-fold Cartesian product of V with itself to W, there exists a
unique linear mapping Sym’ V — W making the following
diagram commute:

Sym‘ V

/ Illinear
W.

multilinear, symmetric

V><Z

The mapping V*¢ — Sym’ V is the natural one determined
by (vi,...,vg) = vi---vy.



Alternating tensors
AV = VO /T where
T" =Span{vi ® --- @ v : v; = v; for some i # j}.
Notation: vi A+ Avp =1 ® -+ ® vy.
Exercise. Show

VIA- - AViN- AN AVp= =i A AViA- - AViA-- - Ay

Idea of proof: We know 0 = u A (v + w) A (v + w). Expand the
RHS.

Exercise. In A°R? expand (2,3) A (1,4) in terms of the standard
basis e;, e> for R2.



Alternating tensors

If V has basis e1, ..., e, then A’V has basis consisting of the
vectors

e, = €y N+ Aey such that up <--- < py.

Therefore, dimAfV = (Z)



Universal property of alternating products

A multilinear map f: V*¢ — W is alternating if
f(vi,...,ve) =0if v; = vj for some i # j. There is a canonical
multilinear alternating mapping

v VX Aty
(Viy ooy ve) = v Ases A vy
The ¢-th exterior product is characterized by the following
universal property: given any vector space W and multilinear

alternating mapping V*¢ — W, there is a unique linear
map AYV — W making the following diagram commute:

AV

/ Illinear
.

multilinear, alternating

x £




Algebra structure on tensors

Ve @ v — yelrs)

(@ Qu)VI® - QVs) » R QU RV ® -+

Similarly, we have

Sym” V x Sym* V — Sym'** v
ANV x NV = NV,

Finally, we define:

SymV = @Syme Vand A*V .= @/\L]V.
>0 >0

X Vs



