Differentiable Mappings

The discussion of differentiable mappings of manifolds will take place on the blackboard.

These slides will cover a few side topics:

- 1. Review of projective *n*-space, \mathbb{P}^n .
- 2. Open functions.
- 3. Compactness.

Projective *n*-space

$$\mathbb{P}^n$$
 = one-dimensional subspaces of \mathbb{R}^{n+1}

= lines through the origin in \mathbb{R}^{n+1}

$$= \mathbb{R}^{n+1} \setminus \{0\} / [p \sim \lambda p \text{ for } \lambda \neq 0]$$
$$= S^n / [p \sim -p]$$

Projective *n*-space

Charts

$$U_i = \{(x_1, \dots, x_{n+1}) : x_i \neq 0\}$$
 for $i = 1, \dots, n+1$

$$\phi_i \colon U_i \to \mathbb{R}^n$$

$$(x_1, \dots, x_{n+1}) \mapsto \left(\frac{x_1}{x_i}, \dots, \frac{\widehat{x_i}}{x_i}, \dots, \frac{x_{n+1}}{x_i}\right)$$

Open mappings

Definition. Let $f: S \to T$ be a function between topological spaces.

- *f* is continuous if *f*⁻¹(*V*) is open for all open subsets
 V ⊆ *T*.
- f is open if f(U) is open for all open subsets $U \subseteq S$.

What about following function?

$$f: \mathbb{R} \to \mathbb{R}$$

 $x \mapsto \begin{cases} x & \text{if } x < 0 \\ 0 & \text{if } x \ge 0. \end{cases}$

Point: Not all topological properties are preserved under continuous mappings.

Compactness

Definition. A topological space S is *compact* if every open covering of S has a finite subcover:

If $\{U_{\alpha}\}_{\alpha \in I}$ is a collection of open subsets of S such that $S = \bigcup_{\alpha \in I} U_{\alpha}$, then there exists a finite subset $\{i_1, \ldots, i_k\} \subseteq I$ such that $S = U_{i_1} \cup \cdots \cup U_{i_k}$.

Examples. Is the open interval $(0, 1) \subset \mathbb{R}$ compact? What about the closed interval $[0, 1] \subset \mathbb{R}$? By Math 321, a subset of \mathbb{R}^n is compact if and only if it is closed and bounded.

Compactness

Proposition. Compactness is preserved by continuous mappings: Suppose $f: S \to T$ is a continuous mapping topological spaces and *C* is a compact subset of *S*. The $f(C) \subseteq T$ is compact.

Proof. Exercise.

Thanks!