- Let (U, h) be a chart at p on a manifold M. Define the tangent vector $(\partial/\partial x_i)_p$ with respect to (U, h) as an element of $T_p^{\text{geo}}M$, as an element of $T_p^{\text{alg}}M$, and as an element of $T_p^{\text{phy}}M$.
- Let $f: M \to N$ be a mapping of manifolds, and let $p \in M$. Define $df_p: T_pM \to T_{f(p)}N$, the differential mapping at p, under our three interpretations of tangent space at p.
- Let e_1, e_2, e_3 be the standard basis for \mathbb{R}^3 , and let u = (1, 2, 3), v = (4, 0, 1), and w = (2, -1, -1) in \mathbb{R}^3 . Write the following in terms of standard bases for the appropriate tensor spaces:
 - (a) $u \otimes v + 3v \otimes w \in \mathbb{R}^3 \otimes \mathbb{R}^3$.
 - (b) $u \cdot v + 3v \cdot w \in \operatorname{Sym}^2 \mathbb{R}^3$.
 - (c) $u \wedge v + 3v \wedge w \in \Lambda^2 \mathbb{R}^3$.
- What is the universal property of the tensor product? symmetric product? exterior product?
- What is the dual of a real vector space V?
- Let v_1, \ldots, v_n be a basis for a vector space V. What is the dual basis for V^* ?
- Let $f: \mathbb{R}^2 \to \mathbb{R}^3$ be defined by f(x, y) = (2x + y, 5x, x y), and let $\phi: \mathbb{R}^3 \to \mathbb{R}$ be defined by $\phi(u, v, w) = u + 2v + w$. Then $\phi \in (\mathbb{R}^3)^*$. What is the pullback $f^*\phi \in (\mathbb{R}^2)^*$.
- What is an alternating ℓ -form? Explain why an alternating ℓ -form on a vector space V can be identified with an element of $(\Lambda^{\ell}V)^*$, and hence, with an element of $\Lambda^{\ell}V^*$.