- Suppose $f: \mathbb{R}^2 \to \mathbb{R}^3$ is a parametrized surface. Give a parametrization of the tangent space for this surface at the point $f(p) \in \mathbb{R}^3$.
- What is a *topology* on a set X?
- Let X be a topological space.
 - (a) What is a neighborhood of a point $x \in X$?
 - (b) Let $A \subseteq X$. What does it mean to say A is *open*? What does it mean to say A is closed? What is the *closure* of A?
 - (c) Given a basis for a topology, how do you form a topology?
- Let X and Y be topological spaces. What does it mean for a function $f: X \to Y$ to be *continuous*? What does it mean for X and Y to be *homeomorphic*?
- Let X be a topological space, and let $A \subseteq X$. What is the subspace topology on A?
- Let X and Y be topological spaces. What is the product topology on $X \times Y$?
- Let X be a topological space, let Z be a set, and let $f: X \to Z$ be a surjection. What is the *quotient topology* on Z?
- Let X be a topological space. What does it mean for X to be Hausdorff? What does it mean for X to be *connected*?
- Manifolds.
 - Let X be a topological space. What is an *n*-dimensional chart on X?
 - What does it mean to say X is *locally Euclidean*?
 - Given charts (U, h) and (V, k), what is the transition function from U to V? Make sure to specify the domain and codomain. What does it mean for these charts to be differentiably related?
 - What is an *n*-dimensional atlas on X? What does it mean for an atlas to be differentiable?
 - What is a differentiable structure on X.
 - What is an *n*-dimensional differentiable manifold?
 - What does it mean for a continuous function $f: M \to N$ to be differentiable $at \ p \in M$?
- Projective space.
 - What is projective *n*-space, \mathbb{P}^n ?
 - What are the standard charts on \mathbb{P}^n .