In the following, refer to Figure 9 in our text which exhibits the mappings Φ_1 , Φ_2 , and Φ_3 relating our three notions of tangent space.

QUESTION 1. Let $p = (1,2) \in M = \mathbb{R}^2$. Consider the curve $\alpha(t) = (1,2) + t(3,4)$ in M passing through p at time t = 0, and the function $f(x,y) = x^2 + xy$ on M. Let $\alpha \colon \mathcal{E}_p \to \mathbb{R}$ be the derivation associated with $[\alpha] \in T_p^{\text{geom}}$, i.e., $v_{\alpha} = \Phi_1([\alpha])$. What is $v_{\alpha}(f)$?

QUESTION 2. Let p, M, α , and v_{α} be as in Question 1. Consider the chart (M, h) where h(x, y) = (3x + y, 2x + y). Let \tilde{v} be the element of T_p^{phy} corresponding to v_{α} . What is $\tilde{v}(M, h)$.

Solutions appear on the next page.

Question 1: 16. Question 2: (13,10).

 $\mathbf{2}$