
Math 341 Midterm

This is an untimed exam. You may use our course notes, lecture slides, your homework
problems, and the homework solutions (on our Moodle page) but no other outside re-
sources. Please submit your work via Gradescope by 1:10 p.m., Friday, October 13. If you
find any typos, please let me know by email (davidp@reed.edu). If any typos are found, I
will send email to the class.

Problem 1. Let M := P1 × P1. We can refer to points in M by a pair of homogeneous
coordinates: (s, t) for the first factor and (u, v) for the second. Define the mapping

g : P1 × P1 → P3

((s, t), (u, v)) 7→ (su, sv, tu, tv).

(a) Describe an atlas for M consisting of four charts:

(Usu, hsu), (Usv, hsv), (Utu, htu), (Utv, htv),

where, for instance, Usu = {((s, t), (u, v)) ∈ P1 × P1 | s ̸= 0, u ̸= 0}. Define all of these
sets and their chart mappings.

(b) Find the transition functions
(i) from Usu to Utu and
(ii) from Usv to Utu.

(c) Show that g is well-defined: why is it independent of the choice of bi-homogeneous
coordinates, and why is its image a point in P3 (note that (0, 0, 0, 0) /∈ P3)?

(d) Let the homogeneous coordinates on P3 be (a, b, c, d). Begin the job of showing that g
is smooth by describing g in local coordinates with respect to Usu on M and (Ua, ha)
on P3 (where Ua is the set of points in P3 such that a ̸= 0 and ha is the usual coordinate
mapping).

Problem 2. The n-sphere is the set Sn = {x ∈ Rn+1 | |x| = 1}. It has the topology
induced by Rn+1, i.e., a set is open in Sn if and only if it is the intersection of an open set
of Rn+1 with Sn. Each point in Sn has some non-zero coordinate. For i = 1, . . . , n + 1,
define U+

i = {x ∈ Sn : xi > 0} and U−
i = {x ∈ Sn : xi < 0}. Define πi(x1, . . . , xn+1) =

(x1, . . . , xi−1, xi+1, . . . , xn+1). Then the collection of charts (U+
i , πi) and (U−

i , πi) for i =
1, . . . , n+ 1 serves as an atlas for Sn.

(a) To verify that these charts are differentiably related,
(i) compute the transition function from U+

1 to U+
2 , and

(ii) compute the transition function from U+
1 to U−

2 .
The smoothness of the rest of the transition functions follows by symmetry.

(b) Consider the function f(x) =
∑n+1

i=1 x4i defined on Sn. Let p ∈ Sn with p1 > 0. With
respect to the chart (U+

1 , π1), take the local coordinates to be x2, . . . , xn+1, as seems
natural in this case. Let a, b ∈ R, and let

v := a

(
∂

∂x2

)
p

+ b

(
∂

∂x3

)
p
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be a tangent vector at p. Calculate v(f). In other words, think of v as a derivation and
apply it to f . (Don’t worry if the answer is not beautiful.)

Problem 3. Let M be an n-dimensional manifold. For each p ∈ M , let ξp be the R-algebra
of germs of functions at p. The germs vanishing at p are denoted by

mp := {f ∈ ξp | f(p) = 0} ⊂ ξp.

(Recall that the value of f ∈ ξp at p is well-defined; so in particular, the notion of a germ
being zero at p is well-defined). Note that mp is an ideal in ξp, meaning that it is closed
under addition and has the property that if f ∈ mp and g ∈ ξp, then fg ∈ mp. Next, define

m2
p := {

∑k
i=1 figi | k ∈ N and fi, gi ∈ mp for i = 1, . . . k}.

We think of m2
p as the germs “vanishing to order two” at p.

Now mp is a real vector space, and m2
p is a vector subspace of mp. So we can consider the

quotient vector space
mp/m

2
p,

which is just the space of germs vanishing at p, except we consider two such germs to be
the same if they differ by an element of m2

p. In particular, elements of m2
p are treated as 0

in mp/m
2
p. The purpose of this exercise is to show(

mp/m
2
p

)∗ ≈ TpM.

(Thus, it also follows that mp/m
2
p ≈ T ∗

pM , which provides an interesting way of thinking of
cotangent space.)

(a) Think of TpM as the space of derivations of germs and define

α : (mp/m
2
p)

∗ → TpM

ϕ 7→ α(ϕ)

where

α(ϕ) : ξp → R
f 7→ ϕ(f − f(p)).

(Note that f − f(p) vanishes at p, so it may be considered as an element of mp/m
2
p.)

Linearity of both α and α(ϕ) is straightforward and does not need to be checked here.
Prove that α(ϕ) is a derivation. Hint:

fg − f(p)g(p) = (f − f(p))(g − g(p)) + f(p)(g − g(p)) + g(p)(f − f(p)).

(b) Now define

β : TpM → (mp/m
2
p)

∗

v 7→ β(v)

where

β(v) : mp/m
2
p → R
f 7→ v(f).



(i) Show that β(v) is well-defined.
(ii) Show that α and β are inverses.

Problem 4. Let R(ω) :=
⊕∞

i=1R be the collection of all sequences of real numbers with
only a finite number of nonzero terms. Let Rω :=

∏∞
i=1R be the collection of all sequences

of real numbers. The standard basis vectors {ei}∞i=0 form basis for R(ω). A basis for Rω

would be much harder to describe. (Note that the all-ones vector (1, 1, . . . ) is in Rω but
is not a linear combination of the ei. Linear combinations have, by definition, a finite
number of summands.) We would like to show R(ω) and Rω are the categorical coproduct
and product, respectively, in the category of vector spaces. For instance, first consider R(ω).
For i = 1, 2, . . . , there are canonical injections ℓi : R → R(ω) sending x ∈ R to the sequence
whose i-th term is x and whose other terms are zeroes. Suppose X is a real vector space
and you are given linear mappings fi : R → X for each i.

(a) Show there is a unique linear mapping g so that the following diagram commutes for
each i:

X R(ω)

R

∃!g

fi
ℓi

The mapping g is usually denoted ⊕ifi : R(ω) → X.
(b) To show that Rω is the product, you need to show the “dual” result, turning all the

arrows around. There are canonical projections πi : Rω → R sending a sequence to its
i-th term. Show that given linear mappings fi : X → R for each i, there exists a unique
linear mapping g so that the following diagram commutes for each i:

X Rω

R

∃!g

fi
πi

The mapping g in this case is usually denoted
∏

i fi : X → Rω.
(c) Show that (R(ω))∗ ≈ Rω by providing linear isomorphisms

α : (R(ω))∗ → Rω

β : Rω → (R(ω))∗

and showing that α ◦ β = idRω and β ◦ α = id(R(ω))∗ .
1

1Thus, we have an example of a vector space V for which V ∗ is not isomorphic to its dual. [It is impossible
to have a linear isomorphism between R(ω) and Rω since only one has countable dimension.] Recall that
V ∗ ≈ V whenever V is finite-dimensional.


