Note: In this HW, the base field will always be \mathbb{R} . An *r*-plane in \mathbb{P}^n is an (r+1)-dimensional subspace of \mathbb{R}^{n+1} , i.e., $\mathbb{G}_r \mathbb{P}^n = G(r+1, n+1)$. Take Plücker coordinates for G(r, n) using lexicographic ordering on the column indices $j: 1 \leq j_1 < \cdots < j_r \leq n$. (So j < j' if first nonzero entry of j - j' is negative.) Also, we embed $\mathbb{R}^n \subset \mathbb{P}^n$ by sending (x_1, \ldots, x_n) to the point with homogeneous coordinates $(x_1, \ldots, x_n, 1)$, and we embed $G(2, 4) = \mathbb{G}_1 \mathbb{P}^3 \subset \mathbb{P}^5$ via the Plücker embedding.

Problem 1.

(a) Find the coordinates of

$$L = \begin{pmatrix} 1 & 3 & 0 & -1 \\ 2 & 7 & 1 & 3 \end{pmatrix} \in G(2,4)$$

with respect to the chart $(U_{1,2}, \phi_{1,2})$ and with respect to the chart $(U_{1,3}, \phi_{1,3})$. Assume we are working over the reals. So the coordinates will be in \mathbb{R}^m for some m.

- (b) Find the transition function from $U_{1,2}$ to $U_{1,3}$ for G(2,4) (as a mapping $\mathbb{R}^m \to \mathbb{R}^m$ for some m).
- (c) Use (b) to verify (a).

PROBLEM 2. A plane in \mathbb{R}^n is a set of the form L = p + W where $p \in \mathbb{R}^n$ and W is a 2-dimensional subspace of \mathbb{R}^n . From linear algebra, we know L = W if and only if $0 \in L$.

- (a) Let L and M be planes in \mathbb{R}^3 . If L and M are parallel, then $L \cap M = \emptyset$, and thus dim $(L \cap M) = -1$. It is also possible that L and M meet in a line, and thus dim $(L \cap M) = 1$. If L = M, then dim $(L \cap M) = 2$. Show that it is impossible for dim $(L \cap M) = 0$, i.e., for L and M to meet in a point. (An inequality from class may help.)
- (b) Give an example of two planes in \mathbb{R}^4 meeting in a single point.

PROBLEM 3. For each of the following, determine whether the given point $p \in \mathbb{P}^5$ is the set of Plücker coordinates for a line in \mathbb{P}^3 , and, if so, find homogeneous coordinates for the corresponding line in \mathbb{P}^3 (i.e., element of $G(2,4) = \mathbb{G}_1\mathbb{P}^3$):

(a) p = (2, 0, -1, 0, 1, 1)(b) p = (1, 3, 2, 0, 1, 3).

PROBLEM 4. Consider the line in \mathbb{R}^4 with parametric equation

$$p(s) = (1, 2, 3, 4) + s(1, 1, 0, 0).$$

Embed \mathbb{R}^4 in \mathbb{P}^4 via $(x_1, \ldots, x_4) \mapsto (x_1, \ldots, x_4, 1)$. Let *L* be the closure of the image of p(s) in \mathbb{P}^4 to get a line in \mathbb{P}^4 . (Remember: a line is determined by two points.) Find the Plücker coordinates of *L*.

PROBLEM 5. We would like to show that the set of all lines in three-space that lie in a given plane and pass through a given point forms a line L such that $L \subset \mathbb{G}_1 \mathbb{P}^3 \subset \mathbb{P}^5$.

- (a) Let $p, q \in \mathbb{P}^3$ and let P, Q be planes in \mathbb{P}^3 (i.e., 3-dimensional subspaces of \mathbb{R}^4). Suppose $p \in P$ and $q \in Q$. Prove there is a linear isomorphism $\mathbb{R}^4 \to \mathbb{R}^4$ that, when considered as a mapping $\mathbb{P}^3 \to \mathbb{P}^3$, sends p to q and P to Q.
- (b) Let $p \in \mathbb{P}^3$ and let P be a plane in \mathbb{P}^3 . Let L be the set of all lines in \mathbb{P}^3 that lie in P and pass through the point p. Since L consists of lines in \mathbb{P}^3 , we have $L \subset \mathbb{G}_1 \mathbb{P}^3$. Show that L is a line in \mathbb{P}^5 . (Hint: the previous part of this problem can simplify matters. Find the Plücker coordinates of any line meeting the given conditions.)