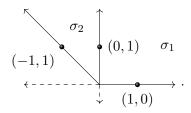
PROBLEM 1. Consider the cone $\sigma = \mathbb{R}_{\geq 0}(0,1) + \mathbb{R}_{\geq 0}(3,-1)$. Describe the affine toric variety U_{σ} . (There are four generators and three relations for the semigroup S_{σ} . The three relations do not involve coefficients higher than 2.)

PROBLEM 2. Let Δ be the fan with two maximal cones $\sigma_1 = \mathbb{R}_{\geq 0}(1,0) + \mathbb{R}_{\geq 0}(0,1)$ and $\sigma_2 = \mathbb{R}_{\geq 0}(-1,1) + \mathbb{R}_{\geq 0}(0,1)$:



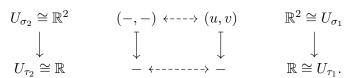
- (a) Restricting to the reals, have $U_{\sigma_1} = \mathbb{R}^2$ with natural coordinates u and v corresponding to e_1 and e_2 , respectively. Describe the toric variety $X(\Delta)$ by identifying U_{σ_2} and the gluing mapping $U_{\sigma_1} \longrightarrow U_{\sigma_2}$ (the dashed arrow means that the mapping is not defined at all points of U_{σ_1}). Try to order the coordinates so that the gluing gives a \mathbb{P}^1 in the first coordinates.
- (b) There is a mapping of lattices

$$N = \mathbb{Z}^2 \to \mathbb{Z} = N'$$
$$(u, v) \mapsto u$$

which naturally maps Δ to a fan Δ' having maximal cones $\tau_1 = \mathbb{R} \cdot 1$ and $\tau_2 = \mathbb{R} \cdot (-1)$. For i = 1, 2, the image of σ_i under the mapping is τ_i and induces a mapping $U_{\sigma_i} \to U_{\tau_i}$. These two maps glue together to give a mapping

$$\pi\colon X(\Delta)\to X(\Delta')=\mathbb{P}^1.$$

Describe this construction by filling in the blanks below in terms of the coordinates (u, v) on U_{σ_1} :



(c) Over the reals, the space $X(\Delta)$ is found by gluing two copies of \mathbb{R}^2 . Can you identify this space and the mapping π ? (Some things that might help: Think of \mathbb{P}^1 as S^1 . What are the fibers of the mapping $X(\Delta) \to \mathbb{P}^1$?)

PROBLEM 3. Let P be the hexagon formed as the convex hull as (0,0), (1,0), (0,1), (2,1), (1,2), and (2,2).

- (a) Draw the fan Δ_P for the corresponding toric variety, labeling the first lattice points along its 1-dimensional cones.
- (b) Choose two adjacent 2-dimensional cones in Δ_P , construct the two corresponding affine toric varieties, and show the gluing instructions.

- (c) Show that $X(\Delta_P)$ smooth.
- (d) Calculate the Chow ring, $A^{\bullet}X(\Delta_P)$.
- (e) Calculate the cohomology $H^k X(\Delta_P)$ for all k.