
Math 341 for Friday, Week 10

Problem 1. Find a flaw in the following argument. Let M be an oriented nmanifold
without boundary. Then HnM ̸= 0. To prove this, let ω ∈ ΩnM be an n-form with
compact support such that

∫
M ω ̸= 0. Such forms always exist. Then ω is not a coboundary,

i.e., ω is not exact. For otherwise, there would exist η ∈ Ωn−1M such that dη = ω, and then
Stokes’ theorem coupled with the fact that ∂M = ∅ would imply∫

M
ω =

∫
M

dη =

∫
∂M

η = 0.

(Compare the above to a similar argument given in Proposition 11.9.)

Problem 2. Let M and N be smooth manifolds. Show that homotopy, ∼, is an equivalence
relation on the set of mappings f : M → N . As explained in the text (Remark 11.22), it is
enough to establish this result for continuous homotopies.

Problem 3. A vector field on Rn is a function F : Rn → Rn. (Imagine attaching the
vector F (p) to p for each point p ∈ Rn.) The flow form for F = (F1, . . . , Fn) is

ωF =

n∑
i=1

Fi dxi ∈ Ω1Rn.

If I ⊂ R is an interval and γ : I → Rn is a parametrized curve in Rn, then∫
γ
F · t⃗ :=

∫
γ
ωF :=

∫
I
γ∗ωF

measures how much the vector field is flowing along γ. The flux form for F is

ωF :=

n∑
i=1

(−1)i−1Fi dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn.

Let D ⊂ Rn−1 be a rectangle (or any “reasonable” domain in Rn), and let S : D → Rn be a
parametrized hypersurface in Rn. Then∫

S
F · n⃗ :=

∫
S
ωF :=

∫
D
S∗ωF

measures the flux of F through the hypersurface S (i.e., how much does F tend to flow
from one side of the hypersurface to the other). It “adds up” the components of F normal
to hypersurface.
If ϕ : Rn → R, then the gradient of ϕ is the vector field

∇ϕ :=

(
∂ϕ

∂x1
, . . . ,

∂ϕ

∂xn

)
: Rn → Rn.

If F = ∇ϕ, then ϕ is called a potential for F . If n = 3, the curl of F is the vector field

curlF :=

(
∂F3

∂x2
− ∂F2

∂x3
,
∂F1

∂x3
− ∂F3

∂x1
,
∂F2

∂x1
− ∂F1

∂x2

)
.
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If u ∈ Rn is a unit vector, then the dot product u ·curlF measures how much F is circulating
about u. Finally, again in the case n = 3, the divergence of F is the R-valued function

divF :=
∂F1

∂x1
+

∂F2

∂x2
+

∂F3

∂x3
.

The quantity div(F )(p) measures how much F is diverging from the point p.
Together, Stokes’ theorem and the fact that

HkRn =

{
R if k = 0,

0 if k > 0

sums up a lot of classical vector calculus.

(a) Justify the following notation for the de Rham complex for R3:

0 → Ω0R3 ∇−→ Ω1R3 curl−−→ Ω2R3 div−−→ Ω3R3 → 0.

(Note: you will want to take the basis dy ∧ dz,−dx ∧ dz, dx ∧ dy for Ω2R3).
(b) What does the fact that H0Rn = R say about functions f : Rn → R? State your result

in terms of elementary vector calculus, without reference to differential forms, exterior
derivatives, etc.

(c) Prove the conclusion of the previous result directly, againg using elementary vector
calculus. (Hint: for each point p ∈ Rn, let γp : [0, 1] → Rn be a curve from 0 to p. Use
the function f ◦ γp and one-variable calculus.)

(d) Suppose a vector field F in Rn has a potential ϕ. Using results from our course, prove
that the flow of F along any curve γ : [0, 1] → Rn only depends on the endpoints of γ.
(Such a vector field is called conservative.)

(e) What does the fact that H1R3 = 0 say in the classical language described above?
(f) Same question for H2R3.


