PROBLEM 1. Find a flaw in the following argument. Let M be an oriented *n*manifold without boundary. Then $H^n M \neq 0$. To prove this, let $\omega \in \Omega^n M$ be an *n*-form with compact support such that $\int_M \omega \neq 0$. Such forms always exist. Then ω is not a coboundary, i.e., ω is not exact. For otherwise, there would exist $\eta \in \Omega^{n-1}M$ such that $d\eta = \omega$, and then Stokes' theorem coupled with the fact that $\partial M = \emptyset$ would imply

$$\int_{M} \omega = \int_{M} d\eta = \int_{\partial M} \eta = 0.$$

(Compare the above to a similar argument given in Proposition 11.9.)

PROBLEM 2. Let M and N be smooth manifolds. Show that homotopy, \sim , is an equivalence relation on the set of mappings $f: M \to N$. As explained in the text (Remark 11.22), it is enough to establish this result for continuous homotopies.

PROBLEM 3. A vector field on \mathbb{R}^n is a function $F \colon \mathbb{R}^n \to \mathbb{R}^n$. (Imagine attaching the vector F(p) to p for each point $p \in \mathbb{R}^n$.) The flow form for $F = (F_1, \ldots, F_n)$ is

$$\omega_F = \sum_{i=1}^n F_i \, dx_i \in \Omega^1 \mathbb{R}^n.$$

If $I \subset \mathbb{R}$ is an interval and $\gamma \colon I \to \mathbb{R}^n$ is a parametrized curve in \mathbb{R}^n , then

$$\int_{\gamma} F \cdot \vec{t} := \int_{\gamma} \omega_F := \int_{I} \gamma^* \omega_F$$

measures how much the vector field is flowing along γ . The *flux form* for F is

$$\omega^F := \sum_{i=1}^n (-1)^{i-1} F_i \, dx_1 \wedge \dots \wedge \widehat{dx_i} \wedge \dots \wedge dx_n.$$

Let $D \subset \mathbb{R}^{n-1}$ be a rectangle (or any "reasonable" domain in \mathbb{R}^n), and let $S: D \to \mathbb{R}^n$ be a parametrized hypersurface in \mathbb{R}^n . Then

$$\int_S F \cdot \vec{n} := \int_S \omega^F := \int_D S^* \omega^F$$

measures the *flux* of F through the hypersurface S (i.e., how much does F tend to flow from one side of the hypersurface to the other). It "adds up" the components of F normal to hypersurface.

If $\phi \colon \mathbb{R}^n \to \mathbb{R}$, then the gradient of ϕ is the vector field

$$\nabla \phi := \left(\frac{\partial \phi}{\partial x_1}, \dots, \frac{\partial \phi}{\partial x_n}\right) : \mathbb{R}^n \to \mathbb{R}^n.$$

If $F = \nabla \phi$, then ϕ is called a *potential* for F. If n = 3, the *curl* of F is the vector field

$$\operatorname{curl} F := \left(\frac{\partial F_3}{\partial x_2} - \frac{\partial F_2}{\partial x_3}, \frac{\partial F_1}{\partial x_3} - \frac{\partial F_3}{\partial x_1}, \frac{\partial F_2}{\partial x_1} - \frac{\partial F_1}{\partial x_2} \right)$$

If $u \in \mathbb{R}^n$ is a unit vector, then the dot product $u \cdot \text{curl } F$ measures how much F is circulating about u. Finally, again in the case n = 3, the *divergence* of F is the \mathbb{R} -valued function

div
$$F := \frac{\partial F_1}{\partial x_1} + \frac{\partial F_2}{\partial x_2} + \frac{\partial F_3}{\partial x_3}$$

The quantity $\operatorname{div}(F)(p)$ measures how much F is diverging from the point p. Together, Stokes' theorem and the fact that

$$H^k \mathbb{R}^n = \begin{cases} \mathbb{R} & \text{if } k = 0\\ 0 & \text{if } k > 0 \end{cases}$$

sums up a lot of classical vector calculus.

(a) Justify the following notation for the de Rham complex for \mathbb{R}^3 :

$$0 \to \Omega^0 \mathbb{R}^3 \xrightarrow{\nabla} \Omega^1 \mathbb{R}^3 \xrightarrow{\text{curl}} \Omega^2 \mathbb{R}^3 \xrightarrow{\text{div}} \Omega^3 \mathbb{R}^3 \to 0.$$

(Note: you will want to take the basis $dy \wedge dz$, $-dx \wedge dz$, $dx \wedge dy$ for $\Omega^2 \mathbb{R}^3$).

- (b) What does the fact that $H^0\mathbb{R}^n = \mathbb{R}$ say about functions $f \colon \mathbb{R}^n \to \mathbb{R}$? State your result in terms of elementary vector calculus, without reference to differential forms, exterior derivatives, etc.
- (c) Prove the conclusion of the previous result directly, againg using elementary vector calculus. (Hint: for each point $p \in \mathbb{R}^n$, let $\gamma_p : [0,1] \to \mathbb{R}^n$ be a curve from 0 to p. Use the function $f \circ \gamma_p$ and one-variable calculus.)
- (d) Suppose a vector field F in \mathbb{R}^n has a potential ϕ . Using results from our course, prove that the flow of F along any curve $\gamma \colon [0,1] \to \mathbb{R}^n$ only depends on the endpoints of γ . (Such a vector field is called *conservative*.)
- (e) What does the fact that $H^1 \mathbb{R}^3 = 0$ say in the classical language described above?
- (f) Same question for $H^2 \mathbb{R}^3$.