Math 341 for Friday, Week 7

PROBLEM 1. For each of the following functions, compute $f^*(d\omega)$ and $d(f^*\omega)$ longhand to verify they are equal.

(a) $f(u,v) = (u, uv^2, u^2 + uv)$ and $\omega = y \, dx + x^2 \, dy + 3 \, dz \in \Omega^1 \mathbb{R}^3$. (b) f(u,v) = uv and $\omega = t \, dt \in \Omega^1 \mathbb{R}$.

PROBLEM 2. Suppose that ω is a 1-form on \mathbb{P}^1 . Let (U_x, ϕ_x) and (U_y, ϕ_y) denote the two standard charts for \mathbb{P}^1 . Say f(t) dt is ω in (U_x, ϕ_x) coordinates and g(s) ds is ω in (U_y, ϕ_y) coordinates. On the overlap, $U_x \cap U_y$, this gives two representations for ω , so it make sense to compare them.

- (a) By pulling back, we have $f(t) dt = (\phi_y \circ \phi_x^{-1})^* (g(s) ds)$. What is the relation between f and g in terms of the coordinate t on U_x ?
- (b) In light of your answer to part (a), construct a nonzero (globally defined) 1-form on \mathbb{P}^1 . There are many possible solutions. The key will be defining f at t = 0 in a way that is compatible with the relation you found in the first part of this problem—taking a limit as $t \to 0$ places a restriction on g. Your resulting form must be smooth.

PROBLEM 3. For i = 1, ..., n, suppose we have curves $\alpha_i \colon [0, 1] \to \mathbb{R}^n$. Let $\beta(t) \coloneqq \{\alpha_1(t), \ldots, \alpha_n(t)\}$, and suppose that $\beta(t)$ is a basis for \mathbb{R}^n for all $t \in [0, 1]$. Prove, explaining your reasoning, that $\beta(0)$ and $\beta(1)$ have the same orientation.

PROBLEM 4. Consider the atlas $\mathfrak{U} := \{(U_x, h), (U_y, k)\}$ for \mathbb{P}^1 given by

 $h: U_x := \{(x, y) \in \mathbb{P}^1 : x \neq 0\} \rightarrow \mathbb{R}$ $(x, y) \mapsto y/x$ $k: U_y := \{(x, y) \in \mathbb{P}^1 : y \neq 0\} \rightarrow \mathbb{R}$ $(x, y) \mapsto -x/y.$

- (a) Show that \mathfrak{U} is an orienting atlas.
- (b) Let $A_1 = h^{-1}([-1,1])$ and $A_2 = k^{-1}([-1,1])$. Show that $A_1 \cup A_2 = \mathbb{P}^1$ with intersection of measure 0.
- (c) Define $\omega \in \Omega^1 \mathbb{P}^1$ whose local description with respect to h is

$$\omega|_{U_x}(t) = \frac{1}{t^2 + 1} dt.$$

- (i) By pulling back along $h \circ k^{-1}$, find the local form for ω on U_y .
- (ii) Compute $\int_{\mathbb{P}^1} \omega$ using A_1 and A_2 and following the definition in the book.