PROBLEM 1. Think of \mathbb{P}^1 as the set of lines through the origin in \mathbb{R}^2 , and define

$$E = \left\{ (\ell, p) \in \mathbb{P}^1 \times \mathbb{R}^2 \mid p \in \ell \right\}.$$

In other words, a point in E consists of a pair (ℓ, x) where ℓ is a point in \mathbb{P}^1 , and $p \in \mathbb{R}^2$ is a point in the line represented by ℓ . There is a projection mapping $\pi: E \to \mathbb{P}^1$ defined by $\pi(\ell, p) = \ell$. We would like to show that E has the structure of a line bundle over \mathbb{P}^1 . Let (U_i, ϕ_i) for i = 1, 2 be the standard charts for \mathbb{P}^1 . For i = 1, 2, we would like to define homeomorphisms $\Psi_i: \pi^{-1}(U_i) \to U_i \times \mathbb{R}$ so that the following holds:

- (i) If Ψ_i is restricted to any fiber $E_{\ell} := \pi^{-1}(\ell)$ for $\ell \in U_i$, then it induces a linear isomorphism $E_{\ell} \to \mathbb{R}^1$.
- (ii) A manifold structure on E is given by, for i = 1, 2,

$$\psi_i \colon \pi^{-1}(U_i) \xrightarrow{\Psi_i} U_i \times \mathbb{R} \xrightarrow{\phi_i \times \mathrm{id}} \mathbb{R} \times \mathbb{R}.$$

First consider the case i = 1, and consider a point $(\ell, p) \in \pi^{-1}(U_1)$. There is a unique representative for the homogeneous coordinates for ℓ of the form (1, t) for some $t \in \mathbb{R}$. (If $\ell = (x, y)$, then t = y/x.) Then, since $p \in \ell$, we can write $p = \lambda(1, t)$ for a uniquely determined $\lambda \in \mathbb{R}$. Define

$$\Psi_1(\ell, p) := (\ell, \lambda) \in U_1 \times \mathbb{R}^1.$$

We have

$$E_{\ell} = \{ ((1,t), \lambda(1,t)) \mid \lambda \in \mathbb{R} \},\$$

which has linear structure defined by

$$\alpha((1,t),\lambda(1,t)) + ((1,t),\lambda'(1,t)) := ((1,t),(\alpha\lambda + \lambda')(1,t)).$$

So it is clear that Ψ_1 restricted to any fiber is a linear isomorphism.

Problem: For $(t, \lambda) \in \psi_1(\pi^{-1}(U_1) \cap \pi^{-1}(U_2)) = (\mathbb{R} \setminus \{0\}) \times \mathbb{R}$, compute $(\psi_2 \circ \psi_1^{-1})(t, \lambda)$. This will give a formula for the transition function from which it should be clear the charts are differentiably related.

PROBLEM 2. The vector bundle just constructed comes from gluing together two copies of $\mathbb{R} \times \mathbb{R}^1$ (since $\phi_i(U_i) = \mathbb{R}$):

Try to picture the gluing and describe the resulting shape. (Warning: when considering a point (t, λ) , pay attention to the sign of t.)

PROBLEM 3. Define the Möbius bundle M as the quotient of $[0,1] \times \mathbb{R}$ by the equivalence $(0,t) \sim (1,-t)$. The points of the form (x,0) in M form the circle S^1 , and there is a well-defined projection mapping $M \to S^1$. Geometrically, the Möbius bundle is a corkscrew of lines attached to S^1 , and it would not be too hard to rigorously show that M is a line bundle over S^1 . Prove that $M \to S^1$ is not trivial by showing it has no global non-vanishing section (one that is never 0). The following picture may be helpful:

PROBLEM 4. In the following, we refer to the standard charts (U_i, ϕ_i) on \mathbb{P}^n .

- (a) Compute the transition function from U_1 to U_2 for $T\mathbb{P}^1$ (really $\pi^{-1}(U_1)$ to $\pi^{-1}(U_1)$).
- (b) Compute the transition function from U_1 to U_2 for $T\mathbb{P}^2$.

PROBLEM 5. Define

$$f: \mathbb{R}^2 \to \mathbb{R}^4$$
$$(x, y) \mapsto (x^2, 2x + y, y^4, xy)$$

- (a) Let $\omega = y_1 dy_1 \wedge dy_2 + y_1 y_3 dy_3 \wedge dy_4 \in \Omega^2 \mathbb{R}^4$. Compute $f^* \omega$ and express your answer in terms of the standard basis $\{dx \wedge dy\}$. for $\Omega^2 \mathbb{R}^2$.
- (b) Consider the vector field $v = y \frac{\partial}{\partial x} + x \frac{\partial}{\partial y}$ on $T\mathbb{R}^2$. Let p = (1, 1), and compute $df_{(1,1)}(v)$ in terms of the standard basis for $T_{f(p)}\mathbb{R}^4$. (We call df(v) the push forward of the vector field v and sometimes denote it by f_*v . We push forward vector fields and pull back forms.)

PROBLEM 6. Consider the polar coordinates mapping

$$f: I := (0,1) \times (0,2\pi) \to \mathbb{R}^2$$
$$(r,\theta) \mapsto (r\,\cos\theta, r\,\sin\theta)$$

and the "volume form", $\omega := dx \wedge dy \in \Omega^2 \mathbb{R}^2$. Compute $f^* \omega \in \Omega^2 I$ using the coordinates (r, θ) on I.