PROBLEM 1. Let V be a vector space over a field k, and let v_1, \ldots, v_n be a basis for V. For each $i = 1, \ldots, n$, define $v_i^* \colon V \to \Bbbk$ by

$$\begin{split} v_i^* \colon V \to \mathbb{R} \\ v_j \mapsto \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{otherwise.} \end{cases} \end{split}$$

Prove that v_1^*, \ldots, v_n^* is a basis for $V^* := \hom(V, \Bbbk)$.

PROBLEM 2. Let $L: \mathbb{R}^n \to \mathbb{R}^m$ be a linear function. The function L is represented by the matrix A whose j-th column is $L(e_j)$, the image of the j-th standard basis vector. Let e_1, \ldots, e_n and f_1, \ldots, f_m be the standard bases for \mathbb{R}^n and \mathbb{R}^m , respectively. Choosing bases dual to the standard bases, show that the matrix representing $L^*: (\mathbb{R}^m)^* \to (\mathbb{R}^n)^*$ is A^t , the transpose of A.

PROBLEM 3. Recall that the *determinant*, det, of a square matrix over a field k is the unique multilinear alternating function of its rows that sends the identity matrix to 1. Let e_1, \ldots, e_n be the standard basis of \mathbb{k}^n and let $v_1, \ldots, v_n \in \mathbb{k}^n$.

- (a) Prove that $v_1 \wedge \cdots \wedge v_n = \det(v_1, \dots, v_n) e_1 \wedge \cdots \wedge e_n$.
- (b) For every $\ell \geq 1$, show that $v_1, \ldots, v_\ell \in \mathbb{k}^n$ are linearly dependent if and only if $v_1 \wedge \cdots \wedge v_\ell = 0$.

PROBLEM 4. Let $V = W = \mathbb{R}^3$, and let e_1, e_2, e_3 be the standard basis for V and f_1, f_2, f_3 be the standard basis for W. Of course, $e_i = f_i$ for all *i*, but it is useful to have separate notation.

(a) From the section on pullbacks in the notes, we have the isomorphism

$$\Lambda^{\ell} W^* \to (\Lambda^{\ell} W)^*$$

$$\phi_1 \wedge \dots \wedge \phi_{\ell} \mapsto [w_1 \wedge \dots \wedge w_{\ell} \mapsto \det(\phi_i(w_j))]$$

for each $\ell \in \mathbb{N}$. An element of $(\Lambda^{\ell}W)^*$ is a linear mapping $\Lambda^{\ell}W \to \mathbb{R}$, and by the universal property of exterior products, this mapping corresponds to a multilinear alternating mapping $W \times \cdots \times W \to \mathbb{R}$, i.e., to an element of $\operatorname{Alt}^{\ell}(W)$ —an alternating ℓ -form. Let

$$\omega = f_1^* \wedge f_3^* \in \Lambda^2 W^*$$

and let $\tilde{\omega} \in \operatorname{Alt}^2(W)$ be the corresponding bilinear alternating 2-form. Describe $\tilde{\omega}$ by calculating the images of (f_i, f_j) for $1 \leq i < j \leq 3$.

(b) Let $L: V \to W$ be a linear mapping with matrix $A = (a_{ij})$ relative to the standard bases (using notation as in part (a)). From the notes, we have the following formulations for pullback mappings:

$$L^* \colon \Lambda^{\ell} W^* \to \Lambda^{\ell} V^* \to (\Lambda^{\ell} V)^*$$

$$\phi_1 \wedge \dots \wedge \phi_{\ell} \mapsto L^* \phi_1 \wedge \dots \wedge L^* \phi_{\ell} \mapsto [v_1 \wedge \dots \wedge v_{\ell} \mapsto \det((\phi_i \circ L)(v_j))]$$

for all $\ell \in \mathbb{N}$. We would like to write

$$L^*\omega = \alpha e_1^* \wedge e_2^* + \beta e_1^* \wedge e_3^* + \gamma e_2^* \wedge e_3^*$$

where α, β, γ are functions of the entries of $A = (a_{ij})$. Solve this in two ways: (i) First use the mapping

$$\begin{array}{cccc} L^* \colon \Lambda^{\ell} W^* & \to & \Lambda^{\ell} V^* \\ \phi_1 \wedge \cdots \wedge \phi_{\ell} & \mapsto & L^* \phi_1 \wedge \cdots \wedge L^* \phi_{\ell} \end{array}$$

[You will need to compute $L^* f_1^*$ and $L^* f_3^*$ in terms of the e_i^* and the entries of A.] (ii) Next use the composite mapping

$$L^* \colon \Lambda^{\ell} W^* \to (\Lambda^{\ell} V)^*$$

$$\phi_1 \wedge \dots \wedge \phi_{\ell} \mapsto [v_1 \wedge \dots \wedge v_{\ell} \mapsto \det((\phi_i \circ L)(v_j))]$$

[To find the coefficients, compute $(L^*\omega)(e_i \wedge e_j)$ for each i < j.]

PROBLEM 5. Describe a natural mapping $f: V \to (V^*)^*$, i.e., one that does not depend on a choice of basis, and prove it is injective. (FYI: Recall that if W is finite-dimensional, then $W \approx W^*$ via a choice of basis, and in particular, dim $W = \dim W^*$. Therefore, if V is finite-dimensional, since f is injective, it is an isomorphism.)