Math 341 for Friday, Week 2

PROBLEM 1. The standard atlas $\{(U_1, \phi_1), (U_2, \phi_2)\}$ for \mathbb{P}^1 has two "pages", $\phi_1(U_1)$ and $\phi_2(U_2)$, each equal to \mathbb{R} . (See our notes or the lecture for Wednesday, Week 2 for definitions.) Compute the transition function from U_1 to U_2 to see how these pages are glued together to form \mathbb{P}^1 .

PROBLEM 2. (For us, *atlas* always means *differentiable atlas*, i.e., that the transition functions are differentiable.) Let V be an n-dimensional vector space over \mathbb{R} . A choice of ordered basis \mathbb{B} for V gives a linear isomorphism

 $h_{\mathbb{B}}\colon V\to\mathbb{R}^n.$

Give V a topology by declaring a set open in V iff its image under $h_{\mathbb{B}}$ is open in \mathbb{R}^n . Then $(V, h_{\mathbb{B}})$ is a chart at each point in V, hence, $\mathfrak{A} := \{(V, h_{\mathbb{B}})\}$ is an atlas containing exactly one chart. (It's differentiable since the only transition function is the identity mapping from \mathbb{R}^n to itself.) Let \mathbb{B}' be any other ordered basis, and consider the corresponding atlas $\mathfrak{A}' = \{(V, h_{\mathbb{R}})\}$. Show that $\mathfrak{A} \cup \mathfrak{A}'$ is a *differentiable* atlas.

Point of this problem: The maximal atlas containing \mathfrak{A} determines a differentiable structure on V and makes V a manifold. The choice of a different ordered basis determines the same differentiable structure. In this sense, V has a canonical manifold structure. (Make sure to review the definition of *differentiable structure* in our text.)

PROBLEM 3. Let X and Y be disjoint copies of \mathbb{R} with the usual topology. Put a topology on the disjoint union $X \cup Y$ by defining a subset $S \subseteq X \cup Y$ to be open if $S \cap X$ and $S \cap Y$ are both open. For $x \in X$ and $y \in Y$, say $x \sim y$ if $x = y \neq 0$ as real numbers. Define $L = (X \cup Y)/\sim$ as a topological space with the quotient topology. In other words, if

$$\tau \colon X \cup Y \to L$$
$$a \mapsto [a],$$

τ

where $[a] = \{b \in X \cup Y : a \sim b\}$, then a subset $U \subseteq L$ is open if and only if $\pi^{-1}(U)$ is open in $X \cup Y$ (which means $\pi^{-1}(U) \cap X$ and $\pi^{-1}(U) \cap Y$ are open a subsets of the real numbers). Thus, L is essentially the real number line with two origins, 0_X from X and 0_Y from Y. Provide proofs or counterexamples.

$$\xleftarrow{0_X} \\ \xleftarrow{0_Y} \\ 0_Y$$

(a) Is L locally Euclidean?

(b) Is L Hausdorff?