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Week 1, Monday: Separable equations

Homepage. Please see our course homepage. In particular, please follow the “Course
information” link and carefully read the material there.

Text. Our text is Differential equations and dynamical systems, edition 3, by Lawrence
Perko.

Overview. This is a course in differential equations for advanced undergraduates.
Here is a rough outline of what we’ll cover:

1. Elementary methods. We will spend two weeks to cover the major part of what
one might do in a first course in differential equations in a lower-level course.

2. Linear theory. We will then learn how to solve systems of linear differential
equations with constant coefficients. The key is exponentiation of matrices and
the Jordan form.

3. Local nonlinear theory. Most nonlinear systems cannot be solved. So we are
interested in describing the qualitative behavior of such systems. The main idea is
to approximate nonlinear systems with linear systems. We will cover the important
existence-uniqueness theorems.

4. Global theory. At the end of the course, we will study limits of trajectories and
topological properties for systems of ODEs.

First goal: elementary methods. For this part of the course, we will not have a
text. The main source for information will be the lecture notes and handouts. There
is also plenty of material readily available online. My hope is that this will be a time
to have fun doing lots of computations by hand. We will cover the six methods from
the handout First recipes, starting with separable equations. In the following, we will
generally think of y as a real-valued function of t.

I. Separable equations. A separable differential equation has the form (or can be
manipulated to have the form)

p(y)
dy

dt
= q(t).
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It is solved by integration: ∫
p(y) dy =

∫
q(t) dt.

examples. Consider the differential equation

y′ =
3t

y
.

It’s separable since we can get the ys on one side of the equality and the ts on the
other:

yy′ = 3t.

Integrate: ∫
y(t)y′(t) dt =

∫
3t dt.

Forgetting about constant until the end, the right-hand side is∫
3t dt =

3

2
t2

For the left-hand side, make the substitution u = y(t). So du = y′(t) dt. Substituting
gives: ∫

y(t)y′(t) dt =

∫
u du =

1

2
u2 =

1

2
y2.

Setting the two sides equal and adding a constant gives the most general solution:

1

2
y2 =

3

2
t2 + c̃

or, equivalently,

y(t)2 = 3t2 + c

for some constant c.

(An alternative way to integrate:∫
y dy =

∫
3t dt ⇒ 1

2
y2 =

3

2
t2 + c.)

To find a particular solution, we can impose an initial condition. For instance,
if y(0) = 5, then

25 = y(0)2 = 3 · 02 + c ⇒ c = 25,
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and the solution is defined implicitly by

y(t)2 = 3t2 + 25.

Thus, y(t) = ±
√

3t2 + 25. Since we want y(0) = 5, we must choose the positive
solution:

y(t) =
√

3t2 + 25.

It is a solution for all t ∈ R. If you initial condition were y(0) = −5, the solution
would be y(t) = −

√
3t2 + 25, again for all t ∈ R.

There are, qualitatively, two types of behavior for solutions of this differential equation
depending on whether c is positive or negative.

−1 −0.5 0.5 1

0.5

1

1.5

2

Graph of y(t) =
√

3t2 + 1.
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Graph of y(t) =
√

3t2 − 1.

For an example where c < 0, suppose the initial condition is y(−1) =
√

2. Then

2 = y(−1)2 = 3 · 12 + c ⇒ c = −1,

and the implicit solution is

y(t)2 = 3t2 − 1.

The solution (with the given initial condition) is

y(t) =
√

3t2 − 1,

which makes sense for 3t2 ≥ 1, i.e., t ≥
√

3/3 and t ≤ −
√

3/3. Since our initial
condition is at t = −1, the maximal interval for the solution is (−∞,−

√
3/3).

Exponential growth and decay model. Let y(t) now denote the size of a popu-
lation, varying over time. What happens if we assume that the rate of growth of the
population is proportional to the size of the population? The rate of growth of the
population is y′(t) and the size of the population is y(t). To say they are proportional
is to say there is a constant r such that

y′(t) = ry(t).

This is a separable equation, which is easy to solve:

y′(t) = ry(t) ⇒ y′(t)

y(t)
= r ⇒

∫
y′(t)

y(t)
dt =

∫
r dt.
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Integrate, then solve for y:

ln |y(t)| = rt+ c ⇒ |y(t)| = ert+c = ecert = aert,

where a a positive constant. So the solution is

y(t) =

{
aert if y > 0

−aert if y < 0.

where a is positive. But we can combine these two solutions into the single solu-
tion y(t) = aert by letting a be any nonzero real number. Setting t = 0, we see

y(0) = ae0 = a.

Hence, a is the initial population. So we might write the solution as

y(t) = y0e
rt.

For instance, if y0 = r = 1, we get the picture below:

−2 −1 1 2

2

4

6

Graph of y(t) = et.

If y0 = 1 and r = −1, we get:
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Graph of y(t) = et.

In performing the integration, we assumed that y was never zero in the range over
which we integrated. What if the initial condition is y(t0) = 0 for some time t0? One
solution then is to take y(t) = 0 for all t. Again, the equation y(t) = y0e

rt works. Is
this the only solution? We’ll focus on this question later in the course.

Example. If y(t) = aert with y(0) = a 6= 0 at what time t has the population
doubled?

solution: The initial population size is a. So we are trying to find the time t
when y(t) = 2a, so we need to solve

aert = 2a.

Since a 6= 0, we need to solve
ert = 2

for t. Taking logs,
ln(2) = ln(ert) = rt.

Hence, assuming r 6= 0,

t =
ln(2)

r
.

If r = 0, then y(t) = a for all t, and the population never doubles.

Population model based on Newton’s law of cooling. Suppose now that the
rate of change of the population is governed by the differential equation

y′(t) = r(S − y(t))
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where r and S are positive constants.

Problems:

1. When is the population increasing? Decreasing?

Answer: We have

y′(t) = r(S − y(t)) > 0 ⇔ S − y(t) > 0 ⇔ S > y(t).

So the population is increasing whenever it’s less that S and decreasing whenever
it’s larger than S.

2. What is the long-term behavior of the population?

Answer: Given the answer to the previous problem it seems like the population
should tend towards S.

3. Solve the equation assuming y < S.

solution: The equation is separable:∫
dy

S − y
=

∫
r dt ⇒ − ln(S − y) = rt+ c

⇒ S − y = ae−rt

⇒ y = S − ae−rt.

Note that y(t)→ S as t→∞.

Let’s now make the initial population explicit in the solution. Say I is the initial
population. Then

I = y(0) = S − ae0 = S − a ⇒ a = S − I.

Our final form for the solution is

y(t) = S − (S − I)e−rt ,

where I = y(0) is the initial population.
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Graph of y(t) = S − (S − I)e−rt with S = 100, I = 50, and r = 1.



Week 1, Wednesday: Logistic equation. Homogeneity trick
for separable equations

1. A. Separable equations.

Logistic growth model. Let P (t) be the size of a population at time t, and let r
and K be positive constants. The logistic growth model is the differential equation

P ′(t) = rP (t)

(
1− P (t)

K

)
.

The constant r is the growth rate and K is the carrying capacity of the population.
The differential equation says the growth in population is proportional to the size of
the existing population with an extra factor to account for limited resources. When
the population is small (when P is much smaller then K), we see P ′ ≈ rP , which
we’ve already seen leads to exponential growth. However, as P gets close to K over
time, the factor 1− P/K slows the growth.

Solution. The equation is separable and can be solved using integration using the
technique of partial fractions.

P ′(t) = rP (t)

(
1− P (t)

K

)
⇒ P ′(t)

P (t)
(

1− P (t)
K

) = r.

The technique of partial fractions requires us to find constants A and B such that

1

P (t)
(

1− P (t)
K

) =
A

P (t)
+

B

1− P (t)
K

. (2.1)

We have

A

P (t)
+

B(t)

1− P (t)
K

=
A
(

1− P (t)
K

)
+BP (t)

P (t)
(

1− P (t)
K

) . (2.2)

12
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Comparing numerators in equations (2.1) and (2.2), we need to adjust A and B so
that

1 = A

(
1− P (t)

K

)
+BP (t).

Or, rearranging:

1 = A+

(
−A
K

+B

)
P (t).

We get an equality if

A = 1 and − A

K
+B = 0.

So A = 1 and B = 1/K. Therefore, we can write (double-check!):

1

P (t)
(

1− P (t)
K

) =
1

P (t)
+

1/K

1− P (t)
K

. (2.3)

Back to solving the differential equation:

P ′(t)

P (t)
(

1− P (t)
K

) = r ⇒
∫

dP

P
(
1− P

K

) =

∫
r dt

⇒
∫

dP

P (t)
(
1− P

K

) = rt+ constant.

For the left-hand side, use equation (2.3):∫
dP

P (t)
(
1− P

K

) dt =

∫ (
1

P (t)
+

1/K

1− P (t)
K

)
dP

=

∫
dP

P (t)
+

1

K

∫
dP

1− P (t)
K

= lnP (t)− ln

(
1− P (t)

K

)
+ constant.

Here, we have assumed that 0 < P < K (how?). Exponentiate both sides to get

P (t)

(
1− P (t)

K

)−1

= aert
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for some positive constant a. We now need to solve this equation for P (t):

aert = P (t)

(
1− P (t)

K

)−1

=
KP (t)

K − P (t)

⇒ aert(K − P (t)) = KP (t)

⇒ aKert = aertP (t) +KP (t) = (aert +K)P (t)

⇒ P (t) =
aKert

aert +K

⇒ P (t) =
aK

a+Ke−rt
.

We would like to express the arbitrary constant a in terms of the initial population:

P (0) =
aKe0

ae0 +K
=

aK

a+K

⇒ P (0)(a+K) = aK

⇒ P (0)K = aK − P (0)a = a(K − P (0))

a =
P (0)K

K − P (0)
.

Substituting this expression for a and simplifying gives the final form for the solution

P (t) =
P (0)K

P (0) + (K − P (0))e−rt
.

(Exercise: How would things change if P > K?) It’s easy to see from this equation
that the limiting population is

lim
t→∞

P (t) = K.
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Graph of P (t) with K = 1000 and P (0) = 10 and two different growth rates: r = 0.5
in red and r = 0.2 in blue.

Exercise. A state game commission releases 40 elk into a game refuge. After 5 years,
the elk population is 104. The commission believes that the refuge can support no
more than 4000 elk. Use a logistic model to predict the elk population in 15 years.

solution: The carrying capacity is K = 4000, so the logistic model in this situation
is

P ′(t) = rP (t)

(
1− P (t)

4000

)
where we can determine r from the additional information we’re given. The initial
population size is P (0) = 40. From the solution to the logistic equation we derived
above, we have

P (t) =
4000P (0)

P (0) + (4000− P (0))e−rt

=
160000

40 + 3960e−rt

=
4000

1 + 99e−rt

We are given that P (5) = 104. Therefore,

104 = P (5) =
4000

1 + 99e−5r
.
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Solve for r:

104 =
4000

1 + 99e−5r
⇒ 104(1 + 99e−5r) = 4000

⇒ e−5r =
1

99

(
4000

104
− 1

)
=

487

1287

⇒ −5r = ln

(
487

1287

)
⇒ r ≈ 0.194.

So our model for this population is

P (t) =
4000

1 + 99e−0.194 t

So we would predict the population after 15 years to be

P (15) =
4000

1 + 99e−0.194·15
≈ 626.

1. B. Separable—homogeneity trick.

An equation of the form

y′ = F
(y
t

)
can be turned into a separable equation using the following substitution: let v = y/t.
It follows that y = vt, and thus, y′ = v + tv′ by the product rule. Then,

y′ = F
(y
t

)
⇒ v + tv′ = F (v)

⇒ v′

F (v)− v
=

1

t

⇒
∫

dv

F (v)− v
=

∫
dt

t
.

Example. Solve

y′ =
y2 + 2yt

t2
.

Notice that in the fraction on the right, the degree of every term in the numerator
and denominator is 2. That’s a sign of homogeneity. In fact, we have

y2 + 2yt

t2
=
y2

t2
+

2yt

t2
=
(y
t

)2

+ 2
(y
t

)
.
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Substitute v = y/t and y′ = v + tv′ to transform the original equation into:

v + tv′ = v2 + 2v.

Separate variables and integrate. For convenience, we will assume that y > 0 and t >
0, and hence v > 0. Other cases can be handled similarly:

v′

v2 + v
=

1

t
⇒

∫
dv

v2 + v
=

∫
dt

t
.

To integrate the left-hand side, use partial fractions:∫
dv

v2 + v
=

∫
dv

v(v + 1)
=

∫ (
1

v
− 1

v + 1

)
dv

= ln(v)− ln(v + 1) + c̃

= ln

(
v

v + 1

)
+ c̃.

We have found that

ln

(
v

v + 1

)
= ln(t) + c.

Exponentiate and solve for v:

v

v + 1
= at. ⇒ v =

at

1− at
.

Since v = y/t, we get

y =
at2

1− at
.

Considering an initial condition at t = 0 doesn’t make much sense (why?). Let’s write
our solution in terms of an initial condition I = y(1):

I = y(1) =
a

1− a
⇒ a =

I

1 + I
.

Substituting gives

y =
I t2

I + 1− It
.

For instance, if I = 1, we get the solution

y =
t2

2− t
,

which is defined on the open interval (−∞, 2), however, recall that at some point
along the way, we assumed t > 0. And, in fact, our original equation is undefined
at t = 0. So the appropriate interval for this solution is (0, 2):



18 CHAPTER 2. WEEK 1, WEDNESDAY
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Solution to y′ = (y2 + yt)/t2 with y(1) = 1.

Here is the Sage code for solving this equation:

sage: t = var(’t’)

sage: y = function(’y’)(t)

sage: desolve(diff(y,t)-(y^2+2*y*t)/t^2,y)

-(t^2 + t*y(t))/y(t) &= _C

sage: desolve(diff(y,t)-(y^2+2*y*t)/t^2,y,ics=[1,1])

-(t^2 + t*y(t))/y(t) &= -2

For the second call to desolve, I’ve included initial conditions, y first and t second:

ics = [y(t_0), t_0].



Week 1, Friday: Exact equations. Integrating factors

II. A. Exact equations.

An exact differential equation has the form

M(t, y) +N(t, y)
dy

dt
= 0.

where
∂M

∂y
=
∂N

∂t
.

We would like to find a solution that defines y implicitly, i.e., we are looking for a
function of the form

Φ(t, y) = 0.

If we had such a function, then by the chain rule,

0 =
dΦ

dt
=
∂Φ

∂t
+
∂Φ

∂y

dy

dt
.

Then Φ would be a solution if

M(t, y) =
∂Φ

∂t
and N(t, y) =

∂Φ

∂y
.

Note that the conditions on the partials of M and N which are required of an exact
equation would then follow necessarily:

∂M

∂y
=

∂2Φ

∂t ∂y
=
∂N

∂t
.

The trick then is to reverse-engineer this argument. Since M(t, y) =
∂Φ

∂t
, we inte-

grate M with respect to t:

Φ(t, y) =

∫
M(t, y) dt =: m(t, y) + f(y)

19
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where f is an arbitrary function of y. Then we use the fact that N(t, y) =
∂Φ

∂y
to

determine f(y):

N(t, y) =
∂Φ

∂y
=

∂

∂y
(m(t, y) + f(y)).

This determines f(y) up to a constant.

Note for those who have seen differential forms: Recall that the differential
form ω is exact if there is a form ψ such that dψ = ω. Since d2 = 0, such forms
are automatically closed: dω = d2ψ = 0. In our case, we are considering the 0-
form, ψ = Φ(t, y), and then

dψ =
∂Φ

∂t
dt+

∂Φ

∂y
dy. = M(t, y) dt+N(t, y) dy.

Another way of saying the same thing is that the vector field

(t, y) 7→ (M(t, y), N(t, y))

is the gradient vector field ∇Φ.

Example. Solve
sin(t+ y) + (2y + sin(t+ y))y′ = 0.

The equation is not separable. However, it is exact since

∂

∂y
sin(t+ y) = cos(t+ y) =

∂

∂t
(2y + sin(t+ y)).

We have M(t, y) = sin(t + y) and N(t, y) = 2y + sin(t + y). To solve the equation,
note that ∫

M(t, y) dt = − cos(t+ y) + f(y)

for some f(y), and then

∂

∂y
(− cos(t+ y) + f(y)) = N(t, y) = 2y + sin(t+ y)

implies that
df

dy
= 2y.

Hence, f(y) = y2 + c̃. Our final solution is

− cos(t+ y) + y2 = c.
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Slope fields. Let y = y(t) be the solution to a differential equation y′ = F (y, t). The
graph of y(t) is a curve. At time t0, the curve passes through the point (t0, y(t0)) and
has slope y′(t0) = F (t0, y(t0)). Imagine attaching to each point (a, b) ∈ R2 a tiny line
segment with slope F (a, y(a)). Any solution curve will then be tangent to each line
segment it meets. (There will be lots of solutions, depending on the initial condition.)
For example, Figure 3.1 creates the slope field and exhibits several possible solutions.
Here is the Sage code used to produce the figure:

Figure 3.1: Slope field and solutions for sin(t+ y) + (2y + sin(t+ y))y′ = 0.

sage: v = plot_slope_field(-sin(t+y)/(2*y+sin(t+y)),(t,-5,5),(y,-3,3),

...: headaxislength=3, headlength=3,color=’blue’)

sage: c = contour_plot(-cos(t+y)+y^2,(t,-5,5),(y,-3,3),fill=false)

sage: v + c

Launched png viewer for Graphics object consisting of 2 graphics primitives

II. B. Exact after multiplying through by integrating factor.

We are again interested in solving

M(t, y) +N(t, y)
dy

dt
= 0,

but this time, we don’t assume that ∂M/∂y = ∂N/∂t. In that case, we look for a
function µ(t, y) such that

µ(t, y)M(t, y) + µ(t, y)N(t, y)
dy

dt
= 0,
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is exact. In fact, µ always exists:

Proof. Let Φ be such that Φ(t, y) = 0 (we can talk about the existence of Φ later,
but for now let’s assume it exists). Differentiate with respect to t, as before, and use
the chain rule

0 =
dΦ

dt
=
∂Φ

∂t
+
∂Φ

∂y

dy

dt
.

We have
dy

dt
= − ∂Φ/∂t

∂Φ/∂y
= −M(t, y)

N(t, y)
,

and, hence,
∂Φ/∂t

M(t, y)
=
∂Φ/∂y

N(t, y)
=: µ(t, y),

where we have just now defined µ. It follows that

0 = µ(t, y)M(t, y) + µ(t, y)N(t, y)
dy

dt
=
∂Φ

∂t
+
∂Φ

∂y

dy

dt
,

which is now exact. �

That’s the good news. The bad news is that it might not be easy to find µ. I typical
strategy is to assume that µ has a certain form involving parameters, and then try
to figure out what values for the parameters will make your equation exact.

Example. Solve

ty2 + 4t2y + (3t2y + 4t3)
dy

dt
= 0.

This equation is not exact. We’ll try to find an integrating factor of the form µ(t, y) =
tmyn. So we would like for

(tmyn)(ty2 + 4t2y) + tmyn(3t2y + 4t3)
dy

dt
= 0

to be exact. We need

∂

∂y
(tm+1yn+2 + 4tm+2yn+1) =

∂

∂t
(3tm+2yn+1 + 4tm+3yn).

In other words, we need

(n+ 2)tm+1yn+1 + 4(n+ 1)tm+2yn = 3(m+ 2)tm+1yn+1 + 4(m+ 3)tm+2yn.

Equate coefficients:

n+ 2 = 3(m+ 2) and 4(n+ 1) = 4(m+ 3).
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Solving this system of linear equations yields m = −1 and n = 1. Our integrating
factor is µ(t, y) = y/t. Ah, ha! That reminds me of the homogeneity trick. In fact,
solving for dy/dt in the original equation does give the form y′ = F (y/t)! So we could
have solved this with our earlier machinery. Nevertheless, we’ll continue from here.
Multiplying through by the integrating factor transforms our original equation into

y3 + 4ty2 + (3ty2 + 4t2y)
dy

dt
= 0,

which is now exact with

M = y3 + 4ty2 and N = 3ty2 + 4t2y.

(Check that ∂M/∂y = ∂N/∂t to be sure.) Solve the exact equation:

Φ(t, y) =

∫
M dt = ty3 + 2t2y2 + f(y)

implies

N(t, y) =
∂Φ

∂y
= 3ty2 + 4t2y +

df

dy
.

Comparing with N(t, y) shows that df/dy = 0. Hence, f(y) = c̃, a constant. Our
solution:

ty3 + 2t2y2 = c,

(where c = −c̃, is just another constant). Figure 3.2 give the slope field and several
solutions. Figure 3.3 plots the function z = ty3 +2t2y2. The level sets of this function
are solutions to the differential equation.
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Figure 3.2: Slope field and solutions to ty2 + 4t2y + (3t2y + 4t3)dy
dt

= 0.

Figure 3.3: Plot of the surface z = ty3 + 2t2y2.



Week 2, Monday: First-order linear. Linear homogeneous
constant coefficients

III. A. First-order linear.

A first-order linear equation has the form

dy

dt
+ p(t)y = q(t).

It is solved using the integrating factor e
∫
p(t) dt: multiplying the equation through by

this factor gives

e
∫
p(t) dt)

(
dy

dt
+ p(t)y

)
= e

∫
p(t) dtq(t). (4.1)

By the chain rule and the fundamental theorem of calculus, the left-hand side of this
equation is

d

dt

(
e
∫
p(t) dty

)
.

So we can integrate equation (4.1) to get

e
∫
p(t) dty =

∫
e
∫
p(t) dtq(t) dt,

and then solve for y.

Example. Consider the following equation

cos(t) y′ + y = sin(t)

with initial condition y(0) = 1. Dividing by cos(t) puts the equation into standard
form (note that cos(t) 6= 0 near t = 0):

y′ + sec(t) y = tan(t).

25
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The integrating factor is

e
∫

sec(t) dt = eln(sec(t)+tan(t)) = sec(t) + tan(t).

(Near t = 0, we have sec(t) + tan(t) > 0. Multiplying the equation through by the
integrating factor gives

(sec(t) + tan(t)) y′ + (sec2(t) + sec(t) tan(t)) y = (sec(t) + tan(t)) tan(t).

Integrate both sides:

(sec(t) + tan(t))y =

∫
(sec(t) + tan(t)) tan(t) dt

=

∫
(sec(t) tan(t) + tan2(t)) dt

=

∫
sec(t) tan(t) dt+

∫
tan2(t)) dt

= sec(t) +

∫
tan2(t)) dt

= sec(t) +

∫ (
sec2(t)− 1

)
dt

= sec(t) + tan(t)− t+ c

Therefore,

y =
sec(t) + tan(t)− t+ c

sec(t) + tan(t)
.

Let’s write this in terms of the initial condition:

1 = y(0) =
sec(0) + tan(0) + c

sec(0) + tan(0)
= 1 + c.

So c = 0, and the solution is

y =
sec(t) + tan(t)− t

sec(t) + tan(t)
= 1− t

sec(t) + tan(t)
.

Here is a plot of the slope field and our solution:
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t

y

Note the weirdness around t = π/2, where cos(t) is 0. It’s exactly where we divide
by zero in our calculations where the interesting stuff happens.

III. B. Bernoulli-type first-order linear.

We are now interested in solving an equation of the form

dy

dt
+ p(t)y = q(t)ym,

where m 6= 1. The trick here is to reduce the equation to a standard first-order linear
equation with the substitution u = y1−m. In that case, we have

u′ = (1−m)y−my′.

Multiply the original equation through by (1−m)y−m

(1−m)y−my′ + (1−m)p(t)y1−m = (1−m)q(t)

and substitute:
u′ + (1−m)p(t)u = (1−m)q(t).

Example. Consider the equation

y′ =
2y

t
− t2y2

with initial condition y(1) = −2. This is Bernoulli-type with m = 2, so we make
the substitution u = y−1. This transforms the equation into the first-order linear
equation

u′ +
2u

t
= t2.
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The integrating factor is
e
∫

(2/t) dt = t2.

Multiply through by it and integrate:

t2u′ + 2tu = t4 ⇒ d

dt
(t2u) = t4

⇒ t2u =

∫
t4 dt =

1

5
t5 + c

⇒ t2

y
=

1

5
t5 + c

The initial condition gives us:

−1

2
=

1

5
+ c ⇒ c = − 7

10
.

The solution is
t2

y
=

1

5
t5 − 7

10
⇒ y =

10t2

2t5 − 7
.

The slope field and our solution:

t

y

IV. A. Linear homogeneous constant coefficients (LHCC).

We are now interested in solving a differential equation of the form

y(n) + an−1y
(n−1) + · · ·+ a1y

′ + a0y = 0
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where y(i) denotes the i-th derivative of y with respect to t. The ai are constants.
The word “homogeneous” refers to the fact that a 0 appears to the right of the equals
sign. Letting D := d/dt, we can write the above equation as

(Dn + an−1D
n−1 + · · ·+ a1D + a0)y = 0

or just
P (D)y = 0

where P is the polynomial P (x) =
∑n

i=0 aix
i.

Main theory.

1. The solution space is linear: suppose that y1 and y2 are solutions, i.e., P (D)y1 =
P (D)y2 = 0. Let α be a constant. Then

P (D)(y1 + αy2) = P (D)y1 + αP (D)y2 = 0

by linearity of differentiation.

2. The “basic” solutions have the form ert (more on this later).

3. When determining which values for r are suitable, something nice happens:

P (D)ert =
n∑
i=0

aiD
iert =

n∑
i=0

air
iert = P (r)ert.

Since ert > 0, we get a solution P (D)ert = 0 if and only if P (r) = 0. So the
values for r that give solutions are exactly the zeros of the polynomial P . The
polynomial P (r) is called characteristic polynomial for the equation.

4. For uniqueness, we specify y(t0), . . . , y(n−1)(t0).

Example. Solve
y′′ − y′ − 6y = 0

with initial conditions y(0) = 0 and y′(0) = 1.

solution: Find the zeros of the characteristic polynomial:

P (r) = r2 − r − 6 = (r + 2)(r − 3) = 0 ⇔ r = −2, 3.

The general solution is
y = ae−2t + be3t.
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To satisfy the initial conditions, we need

a+ b = 0

−2a+ 3b = 1.

Solving this system gives a = −1/5 and b = 1/5. So the solution is

y = −1

5
e−2t +

1

5
e3t.

A graph of the solution:

−1 −0.5 0.5 1

2



Week 2, Wednesday: Bernoulli equation. LHCC: complex
roots and repeated roots. Method of undetermined coeffi-
cients

Aside on Bernoulli-type equations. Imagine a moving particle with velocity v and
a force F = F (v) acting on the particle against its direction of motion—a frictional
force. It is reasonable to assume F (−v) = −F (v). Now suppose that F has a power
series expansion

F (v) = a0 + a1v + a2v
2 + . . . .

The fact that F (−v) = −F (v) implies that the even terms vanish:

F (v) = a1v + a3v
3 + a5v

5 + . . .

As a first approximation, we could take

F (v) = a1v

Since force is proportional to acceleration, i.e., F (v) = constant · v′, we can write this
model of friction as

v′ = αv.

The solution is v = eαt, and for our purposes, we take α < 0. The next best
approximation is to use the first two terms of the series:

v′ = αv + βv3,

which is a Bernoulli-type equation. Question: what is the behavior of a particle whose
motion is governed by this equation?

LHCC. We now continue our discussion of linear homogeneous constant coefficients
equations. These have the form

y(n) + an−1y
(n−1) + · · ·+ a1y

′ + a0y = 0,

or, more succinctly,
P (D)y = 0

31
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where D = d/dt and P (x) =
∑n

i=0 aix
i. The trick is to look for solutions of the

form y = ert. We have P (D)ert = P (r)ert. So we have a solution of that form exactly
for the zeros of P .

Example. Solve

y′′ − 4y′ + 13y = 0

with initial conditions y(0) = 0 and y′(0) = 1.

solution: Find the zeroes of the characteristic polynomial (quadratic equation to
the rescue!):

r2 − 4r + 13 = 0 ⇒ r = 2± 3i.

So the general solution is

y = Ae(2+3i)t +Be(2−3i)t.

We would like to express the solution in terms of real numbers:

y = Ae(2+3i)t +Be(2−3i)t

= Ae2t(cos(3t) + i sin(3t)) +Be2t(cos(3t)− i sin(3t))

= (A+B)e2t cos(3t) + (A−B)ie2t sin(3t))

= ae2t cos(3t) + be2t sin(3t).

The general real solution is

y = ae2t cos(3t) + be2t sin(3t).

Now we handle the initial conditions:

0 = y(0) = ae0 cos(0) + be0 sin(0) = a.

So y = be2t sin(3t). Then

1 = y′ = 3be0 cos(0) + 2be0 sin(0) = 3b.

So the solution is

y =
1

3
e2t sin(3t)

Graph of solution:
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−2 −1 1 2

−5

There is one final wrinkle in the story: what if P (r) has a repeated root? Say P (r) has
a factor of the form (r − λ)k. In that case, the general solution will include a0e

λt +
a1te

λt + · · · + akt
k−1eλt. We will be able to understand why this is the case once

we move to the higher-dimensional linear theory. For now, you’re invited to check
that (D− λ)kt`eλt = 0 for 0 ≤ ` ≤ k − 1 by hand. That way, you’ll at least see these
are solutions.

Examples.

1. Consider the equation
y′′′ + 6y′′ + 12y′ + 8y = 0.

Its characteristic polynomial is

P (r) = r3 + 6r2 + 12r + 8 = (r + 2)3.

So P (r) as the root r = −2 of multiplicity 3. The general solution to the equation
is therefore

y = ae−2t + bte−2t + ct2e−2t = (a+ bt+ ct2)e−2t.

2. Consider the equation

y(5) + 3y(4) + 3y(3) + y(2) = 0.

Its characteristic polynomial is

P (r) = r5 + 3r4 + 3r3 + r2 = r2(r + 1)3.

The roots are r = 0 with multiplicity 2 and r = −1 with multiplicity 3. Notice
that the root r = 0 will correspond to solutions involving e0·t = 1. The general
solution is

a1 + a2t+ a3e
−t + a4te

−t + a5t
2e−t.
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3. Say we are considering a LHCC differential equation with characteristic polynomial

P (r) = r3(r − 2)2(r2 + 9)2 = 0.

The roots are r = 0, 2,±3i with multiplicities 3, 2, 2, respectively. The general
solution is

y = a1 + a2t+ a3t
2 + b1e

2t + b2te
2t + c1 cos(3t) + c2 sin(3t) + c3t cos(3t) + c4t sin(3t).

V. Method of undetermined coefficients.

We now consider inhomogeneous linear equations with constant coefficients. These
have the form

P (D)y = f(t).

Where P is a polynomial and D = d/dt, as before. To solve this equation, we first try
to find a particular solution yp. We then find a general solution yh to P (D)y = 0, the
associated homogeneous system. The general solution to the inhomogeneous system
is then yh + yp. The new challenge here is to find the particular solution, yp. The
idea we will use is to guess the form of yp and adjust parameters. Here is a table that
may be of help (“poly” means “polynomial”):

f(t) guess
polynomial general polynomial of some degree

ert aert

(poly)ert (general poly)ert

cos(ωt) or sin(ωt) a cos(ωt) + b sin(ωt)
(poly)ert cos(ωt) or (poly)ert sin(ωt) (gen poly)ert cos(ωt) + (gen poly)ert sin(ωt)

Example. Consider the equation

y′′ − 2y′ + y = t2.

We guess a particular equation of the form

y = a0 + a1t+ a2t
2.

In that case, we have

y′′ − 2y′ + y = 2a2 − 2(a1 + 2a2t) + (a0 + a1t+ a2t
2)

= (2a2 − 2a1 + a0) + (−4a2 + a1)t+ a2t
2.
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Set this equal to t2 and compare coefficients:

0 = 2a2 − 2a1 + a0

0 = −4a2 + a1

1 = a2.

Solving the system gives
a0 = 6, a1 = 4, a2 = 1.

So a particular solution is
yp = 6 + 4t+ t2.

(Check!) We now solve the associated homogeneous equation

y′′ − 2y + y = 0.

The characteristic polynomial is

r2 − 2r + 1 = (r − 1)2,

which has the zero r = 1 with multiplicity 2. So the general solution to the homoge-
neous system is

yh = aet + btet.

The most general solution to the original equation is then

y = yh + yp = aet + btet + 6 + 4t+ t2.

Suppose we are given initial conditions y(0) = 1 and y′(0) = −2. Then

1 = y(0) = a+ 6

−2 = y′(0) = a+ b+ 4.

Therefore, a = −5 and b = −1. The solution is

y = −5et − tet + 6 + 4t+ t2.

Graph of solution:

−3 −2 −1

−2

2



Week 2, Friday: Special second-order equations

V. Method of undetermined coefficients.

We look at one more example of the method of undetermined coefficients. Consider
the equation

y′′ − 2y′ + y = t cos(3t).

We guess a particular solution of the form

y = (a0 + a1t) cos(3t) + (b0 + b1t) sin(3t).

Then

y′ = (a1 + 3b0 + 3b1t) cos(3t) + (−3a0 + b1 − 3a1t) sin(3t)

y′′ = (−9a0 + 6b1 − 9a1t) cos(3t) + (−6a1 − 9b0 − 9b1t) sin(3t)

So we have

y′′ − 2y′ + y = (−8a0 − 2a1 − 6b0 + 6b1 − (8a1 + 6b1)t) cos(3t)

+ (6a0 − 6a1 − 8b0 − 2b1 + (6a1 − 8b1)t) sin(3t)

Set this equal to t cos(3t) and compare coefficients to get the system on linear equa-
tions

0 = −8a0 − 2a1 − 6b0 + 6b1

1 = −8a1 − 6b1

0 = 6a0 − 6a1 − 8b0 − 2b1

0 = 6a1 − 8b1

Solving this system gives the particular solution

yp = − 1

250
(13 + 20 t) cos (3 t)− 3

250
(−3 + 5 t) sin (3 t) .

36
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The corresponding homogeneous equation, y′′ − 2y′ + y = 0, has a general solution
aet + btet. So the general solution to our inhomogeneous equation is

y = aet + btet − 1

250
(13 + 20 t) cos (3 t)− 3

250
(−3 + 5 t) sin (3 t)

Let’s again consider the initial conditions y(0) = 1 and y′(0) = −2. Plugging these
into the general solution and its derivative allow us to determine a and b. The result
is

y =
263

250
et − 77

25
tet − 1

250
(13 + 20 t) cos (3 t)− 3

250
(−3 + 5 t) sin (3 t) .

Graph of solution:

−2 2

−2

VI. A. Second-order. Given a second-order equation of the form

H(t, y′, y′′) = 0

i.e., missing a y-term, we can reduce the order of the equation with the substitu-
tion v = y′.

Example. Consider the equation

ty′′ + 4y′ = t2.

Substitute v = y′ to get the equation

tv′ + 4v = t2.

If t 6= 0, this becomes the standard first-order equation

v′ +
4

t
v = t.
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Say t > 0. Then the integrating factor is exp
(∫

4
t
dt
)

= t4. Multiplying through (and
using the product rule), we have

t4 v′ + 4t3 v = (t4v)′ = t5.

Integrate:

t4v =
1

6
t6 + c.

Now substitute back v = y′:

t4y′ =
1

6
t6 + c.

This is separable:

y′ =
1

6
t2 +

c

t4
⇒ y =

1

18
t3 − 1

3
· c
t3

+ b

=
1

18
t3 +

a

t3
+ b.

Suppose the initial conditions are y(1) = 1 and y′(1) = 2. Then

1 =
1

18
+ a+ b

2 =
1

6
− 3a,

which implies a = −11/18 and b = 14/9. The solution is

y =
1

18
t3 − 11

18

1

t3
+

14

9
.

Graph of solution:

−2 2

−2

2
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Solutions defined near t = 0? Our method of forcing the equation into the form of
a standard first-order equation requires dividing by t, and hence, assumes that t 6= 0.
What if we really want a solution defined near t = 0? My approach was to suppose
the solution can be expanded in terms of a power series y = a0 +a1t+a2t

2 + . . . Plug
this series into the equation ty′′ + 4y′ and set the result equal to t2. Now compare
coefficients and hope we can solve for the ai. If you think about it, we only need to
consider series where ai = 0 for i ≥ 4. So assume y = a0 + a1t+ a2t

2 + a3t
3. We have

ty′′ + 4y′ = t(2a2 + 6a3t) + 4(a1 + 2a2t+ 3a3t
2)

= 4a1 + 10a2t+ 18a3t
2.

Setting the result equal to t2 and comparing coefficients gives a1 = a2 = 0, and a3 =
1/18. The solution is

y = a0 +
1

18
t3.

Graph of solution with initial condition y(0) = 1:

−2 −1 1 2

0.6

0.8

1

1.2

1.4

Note that the only possibly initial condition for y′(0) is y′(0) = 0 (why?). Since this
is a second-order equation, we’d expect to be able to set initial conditions for both y
and y′. We should try to remember to come back to this example when we talk about
existence and uniqueness of solutions.

VI. B. Second-order equation.

Given a second-order equation of the form

H(y, y′, y′′) = 0

i.e., missing t, we again make the substitution v = y′, but then use the chain rule like
so

y′′ =
dv

dt
=
dv

dy

dy

dt
= v

dv

dy
.
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Substituting, our original equation becomes

H

(
y, v, v

dv

dy

)
= 0.

After we find v as a function of y, we solve for y by integrating, as before.

Example. Consider the equation

y′′ + (y′)
3
y = 0.

Let v = y′ and substitute as above to get

v
dv

dy
+ v3y = 0.

This is first-order linear, but even better, it is separable. Supposing v > 0, the
equation becomes

1

v2

dv

dy
= −y.

Integrate: ∫
1

v2
dv = −

∫
y dy ⇒ −1

v
= −1

2
y2 + c̃

⇒ v =
2

y2 − 2c̃

⇒ v =
2

y2 + c
.

Now substitute back in v = y′:

y′ =
2

y2 + c
⇒

∫
(y2 + c) dy = 2

∫
dt ⇒ 1

3
y3 + cy = 2t+ b.

Suppose our initial conditions are y(1) = 0 and y′(1) = 1. Then

1

2
· 03 + c · 0 = 2 · 1 + b ⇒ b = −2.

So the equation becomes
1

3
y3 + cy = −2 + 2t.

To use the second condition, take derivatives with respect to t:

y2 y′ + cy′ = 2.

Plug in y(1) = 0 and y′(1) = 1 to find c = 2. The solution, implicitly, is

1

3
y3 + 2y = −2 + 2t.
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Here is a picture of the slope field and our solution:

VII. Duh.

If your method of solving a differential equation is not working due to a troublesome
set of initial conditions, consider obvious/trivial solutions.

Example. We just solved the equation

y′′ + (y′)3y = 0.

for a particular set of initial conditions. If you look back at our method solution,
you’ll see that we can find a solution satisfying any initial conditions y(t0) = α
and y′(t0) = β, except for those where β = 0. That’s because we divided by v = y′

in the course of our solution. What do we do for the troublesome case of β = 0?
Applying the “duh” method, we immediately find the solution y = α, a constant
function.

Challenge. Solve
y′′ + (y′)3y = t.

with initial condition y(0) = 1 and y′(0) = 0.



Week 3, Monday: Matrix exponentiation

Let F = R or C, and let Mn(F ) denote n × n matrices with coefficients in F . The
derivative of a curve x(t) = (x1(t), . . . , xn(t)) in F n with respect to t gives the curve’s
tangent direction or velocity at time t:

ẋ := x′(t) :=

(
dx1

dt
, . . . ,

dxn
dt

)
.

We are interested in finding x such that

x′ = Ax

and satisfying some initial condition x(0) = x0 ∈ F n. If n = 1, then A = a ∈ F , and
we have already seen the solution x = x0e

at = eatx0. It turns out that the solution in
the case n = 1 is just a space case of the solution for n ≥ 1:

x = eAtx0. (7.1)

Our first goal is to make sense of equation (7.1) (e.g., what does it mean to exponen-
tiate a matrix?) and then prove that it is the unique solution.

Definition. A norm on a vector space V over F is a mapping

‖ ‖ : V → R

satisfying

1. (positive definite) ‖v‖ ≥ 0 for all v ∈ V , and ‖v‖ = 0 if and only if v = 0.

2. (absolute homogeneity) ‖αv‖ = |α|‖v‖ for all v ∈ V and α ∈ F .

3. (triangle inequality) ‖v + w‖ ≤ ‖v‖+ ‖w‖ for all v, w ∈ V .

Examples. The usual absolute value on F n is a norm. If F = R, we have

‖x‖ := |x| :=
√
x · x =

√∑
j x

2
j

42
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and if F = C, we have

‖x‖ := |x| =
√
x · x̄ =

√∑
j |xj|2.

Note: if xj = aj + bji with aj, bj ∈ R, then

‖x‖ = |x| =
√∑

j(a
2
j + b2

j),

which is the length of x ∈ Cn thought of as a vector in R2n. As indicated above, we
use the usual absolute value notation, |x| for this norm.

The case n = 1 says the usual absolute value on F is a norm on F .

Given a norm ‖ ‖ on a vector space V , we can define a metric on V (i.e., a distance
function) by

d(v, w) := ‖v − w‖.

The following properties of this distance function are easy to verify:

1. (positive definite) d(v, w) ≥ 0 for all v, w ∈ V , and d(v, w) = 0 if and only if v = w.

2. (symmetry) d(v, w) = d(w, v) for all v, w ∈ V .

3. (triangle inequality) d(u,w) ≤ d(u, v) + d(v, w) for all u, v, w ∈ V .

The following proposition implies that two norms on a vector space will define the
same topology (“sense of closeness”) on that space:

Proposition. Let ‖ ‖1 and ‖ ‖2 be two norms on a finite-dimensional vector space V
over F . Then these norms are equivalent in the following sense: there exist positive
real numbers a, b such that

a‖v‖2 ≤ ‖v‖1 ≤ b‖v‖2

for all v ∈ V .

Sketch of proof.

Step 1. If the displayed set of inequalities holds, say ‖ ‖1 ∼ ‖ ‖2. Prove that ∼ is
an equivalence relation.

Step 2. By Step 1, it suffices to prove the result when ‖ ‖2 = | |, the usual absolute
value norm, discussed above, and ‖ ‖1 is arbitrary. There is nothing to prove if v = 0,
since any positive constants a and b work in that case. Assume from now an that
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v 6= 0. Then, dividing through by |v| and using properties of the norm, we see
that a|v| ≤ ‖v‖1 ≤ b|v| is equivalent to a ≤ ‖u‖1 ≤ b where u = v/|v| has (usual)
norm |u| = 1.

Step 3. Show that v → ‖v‖1 is a continuous function with respect to | |. That is,
given v ∈ V and ε > 0, show there exists δ > 0 such that if w ∈ V and |v − w| < δ,
then

| ‖v‖1 − ‖w‖1 | < ε.

Step 4. Apply the extreme value theorem, a continuous function on a compact set
(closed and bounded) achieves a minimum and a maximum value. In our case, the
compact set is {u ∈ V : ‖u‖1 = 1} and the minimum and maximum values are the
desired constants a and b, respectively.

Definition. The operator norm on the vector space Mn(F ) of n × n matrices with
coefficients in F is given by

‖A‖ := max
|x|≤1
|Ax|.

for each A ∈Mn(F ) where | | is the usual norm on F .

Remarks.

1. For the identity matrix, we have ‖In‖ = 1.

2. The real number ‖A‖ is the most that A scales any vector:

‖A‖ = max
x 6=0

A

(
x

|x|

)
= max

x 6=0

|Ax|
|x|

.

Thus, |Ax| ≤ ‖A‖|x| for all x ∈ F n. A detailed proof will be given below.

3. When trying to define a norm on Mn(F ), it might seem more natural to just
think of an n × n matrix as an element of F n2

and use the usual norm on F n2
.

However, the norm we have just described is easier to work with and, according
to the proposition given above, it is equivalent to any other norm on Mn(F ).

Lemma 1. For all A,B ∈Mn(F ) and x ∈ F n,

1. |Ax| ≤ ‖A‖|x|.

2. ‖AB‖ ≤ ‖A‖‖B‖.
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3. ‖Ak‖ ≤ ‖A‖k.

Proof. For part 1, first note that the inequality holds when x = 0. So suppose
that x 6= 0, and let u = x

|x| . We have that |u| = 1, and hence,

|Ax|
|x|

=

∣∣∣∣A x

|x|

∣∣∣∣ = |Au| ≤ max
|y|≤1
|Ay| = ‖A‖.

Multiplying through by |x| gives |Ax| ≤ ‖A‖x|, as desired.

For part 2, note that for all x ∈ F n with |x| ≤ 1, we have from part 1,

|(AB)(x)| = |A(Bx)| ≤ ‖A‖|Bx| ≤ ‖A‖‖B‖|x| ≤ ‖A‖‖B‖.

Therefore,
‖AB‖ := max

|x|≤1
|(AB)(x)| ≤ ‖A‖‖B‖.

Part 3 follows from part 2.

Definition. Let (vk)k=0,1,... be a sequence in a normed vector space (V, ‖ ‖). We say

lim
k
vk = v

for some vector v ∈ V if for all ε > 0 there exists N ∈ R such that

‖v − vk‖ < ε

whenever k ≥ N . A series
∑∞

k=0 vk converges to v if its sequence of partial sums v0,
v0 + v1, v0 + v1 + v2,. . . converges to v.

Theorem. For all A ∈Mn(F ) and t0 > 0, the function R→Mn(F ) given by

t 7→
∑
k≥0

Aktk

k!

converges absolutely and uniformly for t ∈ [−t0, t0].

Before proving this theorem, let’s review the notions of absolute and uniform conver-
gence of series of functions. First, a series

∑
k vk in a normed vector space (V, ‖ ‖) is

absolutely convergent if
∑

k ‖vk|| converges. If a series is absolutely convergent then
every rearrangement of the series will converge.

Let V and W be normed vector spaces, and let C ⊆ W . (For instance, we could
take W = R and C = [−t0, t0].) For each n ≥ 0, let fn : W → V be a function. The
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sequence (fn) converges uniformly to f : W → V on C if for all ε > 0, there exists
an N(ε) ∈ R such that for all x ∈ C,

‖f(x)− fn(x)‖ < ε

whenever n > N(ε). Note: the word “uniform” refers to the fact that N(ε) is
independent of x.

The notion of uniform convergence makes sense for a series
∑

k fk since a series is
just a sequence of partial sums.



Week 3, Wednesday: Fundamental theorem for linear systems

From now on, page references are to our text. Recall that we will always be working
over the field F = R or C.

Definition. A sequence (vk) in a normed vector space (V, ‖ ‖) is a Cauchy sequence
if for all ε > 0 there exists N ∈ R such that for all m,n > N , we have

‖vn − vm‖ < ε.

A theorem from analysis says that if V is finite-dimensional then it is complete: a
sequence (vk) converges if and only if it is a Cauchy sequence.

Lemma. (Weierstrass M -test) Let V and W be normed vector spaces with V finite-
dimensional. For each k ≥ 0, let fk : W → V be a function. Let C ⊆ W , and suppose
there exists a sequence (Mk)k of positive numbers such that

‖fk(x)‖ ≤Mk

for all x ∈ C and for all k. Suppose further that
∑

kMk converges. Then
∑

k fk is
absolutely and uniformly convergent on C.

Proof. A sequence in a normed space over F converges if and only if it’s a Cauchy
sequence. Let ε > 0. Since

∑
kMk converges, there exists N ∈ R such that for

all n ≥ m > N , we have

|
∑n

k=0 Mk −
∑m

k=0Mk| = |
∑n

k=m+1 Mk| < ε.

But then for n ≥ m > N is follows that for all x ∈ C

‖
∑n

k=m+1 fk(x)‖ ≤
∑n

k=m+1 ‖fk(x)‖ ≤
∑n

k=m+1Mk < ε.

Thus
∑

k fk is uniformly Cauchy. �

We are now ready to prove that it makes sense to exponentiate a matrix:
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Theorem. For all A ∈Mn(F ) and t0 > 0, the function R→Mn(F ) given by

t 7→
∑
k≥0

Aktk

k!

converges absolutely and uniformly for t ∈ [−t0, t0].

Proof. Let a := ‖A‖ and suppose that |t| ≤ t0. Then from Lemma 1 in the previous
lecture, ∥∥∥∥Aktkk!

∥∥∥∥ ≤ ‖A‖k|t|kk!
≤ ‖A‖

ktk0
k!

=
aktk0
k!

=: Mk.

It follows that ∑
k≥0

Mk = eat0 ,

the usual exponential function. The result follows by the Weierstrass M -test.

Definition. Let A ∈Mn(F ) and t ∈ R. Then

eAt :=
∑
k≥0

Aktk

k!
.

Note: The proof of the previous theorem shows that eAt is absolutely convergent and
uniformly convergent on any closed interval for t. Further,

‖eAt‖ ≤ e‖A‖|t|.

To rigorously prove this last statement, note that∥∥∥∥∥
n∑
k=0

Aktk

k!

∥∥∥∥∥ ≤
n∑
k=0

∥∥∥∥Aktkk!

∥∥∥∥ =
n∑
k=0

‖A‖k|t|k

k!

The norm is a continuous function and hence commutes with limits, and limits pre-
serve inequalities. It therefore follows that

‖eAt‖ =

∥∥∥∥∥ lim
n→∞

n∑
k=0

Aktk

k!

∥∥∥∥∥ = lim
n→∞

∥∥∥∥∥
n∑
k=0

Aktk

k!

∥∥∥∥∥ = lim
n→∞

n∑
k=0

‖A‖k|t|k

k!
= e‖A‖t||.

Proposition. (p. 13) Let A,P ∈Mn(F ) with P invertible. Then

eP
−1AP = P−1eAP.
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Proof. Recall the trick from linear algebra:

(P−1AP )k = (P−1AP )(P−1AP )(P−1AP ) · · · (P−1AP )

= P−1A(PP−1)A(PP−1)A(P · · ·P−1)AP

= P−1AkP.

Therefore,

eP
−1AP :=

∑
k≥0

(P−1AP )k

k!

=
∑
k≥0

(
P−1A

k

k!
P

)

= P−1

(∑
k≥0

Ak

k!

)
P

= P−1eAP.

The matrices P−1 and P can be pulled out of the sum since multiplication by these
represent linear transformations, which are continuous, and the sum is a limit—limits
commute with continuous functions (by definition of continuity).

Proposition. (p. 13) Let A,B ∈Mn(F ). If A and B commute, then e(A+B) = eAeB.

Proof.

e(A+B) =
∑
n≥0

1

n!
(A+B)n

=
∑
n≥0

1

n!

(∑
i+j=n

n!

i!j!
AiBj

)

=
∑
i≥0

1

i!
Ai

(∑
j≥0

1

j!
Bj

)

= eAeB.
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Corollary. (p. 13) If A ∈Mn(F ), then

e−A =
(
eA
)−1

.

Proof. Since A and −A commute,

In = e0 = e(A+(−A)) = eAe−A.

Example. The above proposition only holds, in general, if the matrices A and B
commute. Consider,

A =

(
0 1
0 0

)
and B =

(
1 0
0 2

)
It is easy to check that AB 6= BA.

Since Ak = 0 for k > 1,

eA = I + A =

(
1 1
0 1

)
,

and

eB =
∑
k≥0

1

k!

(
1 0
0 2

)k
=
∑
k≥0

1

k!

(
1k 0
0 2k

)
=
∑
k≥0

(
1/k! 0

0 2k/k!

)
=

(
e 0
0 e2

)
.

Thus,

eAeB =

(
e e2

0 e2

)
.

On the other hand, you can check by induction that

(A+B)k =

(
1 2k − 1
0 2k

)
.

Hence,

eA+B =
∑
k≥0

1

k!

(
1 2k − 1
0 2k

)
=

(
e e2 − e
0 e2

)
6= eAeB.



Week 3, Friday: Fundamental theorem for linear systems. Lin-
ear systems in R2

Lemma. (p. 17) Let A ∈Mn(F ). Then

d

dt
eAt = AeAt.

Proof. For any constants t and h, we know At and Ah commute. Therefore,

d

dt
eAt = lim

h→0

eA(t+h) − eAt

h

= lim
h→0

eAteAh − eAt

h

= lim
h→0

eAt
eAh − In

h
.

Multiplication by a matrix is a linear and, hence, continuous transformation, and by
definition, continuous functions commute with limits. So, continuing from above,

d

dt
eAt = lim

h→0
eAt

eAh − In
h

= eAt lim
h→0

eAh − In
h

.

We now use the fact that eAh is absolutely an uniformly convergent for h restricted
to a compact set, e.g., for h ∈ [−1, 1]. This means, roughly, the we can manipulate
the infinite sum defining the exponential as if it were a polynomial:

d

dt
eAt = eAt lim

h→0

eAh − In
h

51
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= eAt lim
h→0

1

h

(
Ah+

A2h2

2!
+
A3h3

3!
+ . . .

)
= eAtA

= AeAt.

The final step follows since A commutes with itself.

Theorem. (The Fundamental Theorem for Linear Systems. (p. 17)) Let A ∈Mn(F ),
and let x0 ∈ F n. The initial value problem

x′ = Ax

x(0) = x0

has the unique solution
x = eAtx0.

Proof. Using the preceding lemma, if x(t) := eAtx0, then

x′(t) =
d

dt
x(t)

=
d

dt

(
eAtx0

)
=

(
d

dt
eAt
)
x0

= AeAtx0

= Ax.

Further, x(0) = e0x0 = x0. For uniqueness, suppose that x(t) is any solution, and
consider y(t) := e−Atx(t). By the product rule,

y′(t) =
(
e−At

)′
x(t) + e−Atx′(t)

= −Ae−Atx(t) + e−At (Ax(t))

= e−At (−Ax(t) + Ax(t))

= 0.
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Therefore y(t) is constant. To determine the constant, let t = 0:

y(0) = e0x(0) = Inx0 = x0.

Then,

y(t) = e−Atx(t) = x0 ⇒ x(t) = eAtx0.

�

two-dimensional linear systems

Example. Consider the (coupled) linear system

x′1 = x2

x′2 = x1.

Given an initial condition (a, b), a solution will be a curve x(t) = (x1(t), x2(t)) in the
plane, passing through (a, b) at time t = 0. The system itself tells us the velocity
vector of any potential solution at every time:

x′(t) = (x′1(t), x′2(t)) = (x2(t), x1(t)).

So the system determines the vector field F (x1, x2) = (x2, x1) on R2, pictured below:

Any solution curve must “follow the flow”, i.e., its velocity vectors coincide with those
already drawn above. Some possible solution curves are drawn below. You can see
the paths of the curves but not their speeds:
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We will now solve the system using the tools we have developed. First write the

system as x′ = Ax with A =

(
0 1
1 0

)
:

(
x′1
x′2

)
=

(
0 1
1 0

)(
x1

x2

)
.

The solution is x = eAtx0 where x0 = x(0). In order to exponentiate A, we diagonalize
it. The characteristic polynomial of A is

det(A− xI2) = det

(
−x 1
1 −x

)
= x2 − 1 = (x+ 1)(x− 1).

So the eigenvalues are ±1. It’s easy to eyeball the corresponding eigenvectors: (1, 1)
and (1,−1), respectively. So let

P =

(
1 1
1 −1

)
.

Then

P−1 =
1

2

(
1 1
1 −1

)
,

and P−1AP = diag(1,−1) =: D.

Therefore, D = PAP−1, and

eAt = ePDP
−1t = eP (Dt)P−1

= PeDtP−1

=
1

2

(
1 1
1 −1

)(
et 0
0 e−t

)(
1 1
1 −1

)
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=
1

2

(
et + e−t et − e−t
et − e−t et + e−t

)
.

So, for example, the solution with initial condition x(0) = (1, 0) is

x(t) = eAt
(

1
0

)
=

1

2

(
et + e−t et − e−t
et − e−t et + e−t

)(
1
0

)
=

1

2

(
et + e−t

et − e−t
)
.

To see what is happening geometrically, note that

x′ = Ax = PDP−1x ⇒ P−1x′ = DP−1x.

Letting y := P−1x, we have y′ = P−1x′. So substituting gives

y′ = Dy =

(
1 0
0 −1

)
y

an uncoupled system:

y′1 = y1

y′2 = −y2

with solution y1 = aet and y2 = be−t. We then get the solution to our original
equation by

x = Py.

The initial condition x(0) = (1, 0) in the x-coordinates transforms to the initial
condition

y(0) = P−1x(0) = P−1

(
1
0

)
=

1

2

(
1
1

)
in the y-coordinates, which implies a = b = 1

2
. So in the y-coordinates, our solution

is

y(t) =
1

2
(et, e−t).

The geometry is shown below:

P =

(
1 1
1 −1

)

y → Py = x
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Question. How is the magnitude and sign of the determinant of P expressed in the
above image?



Week 4, Monday: Linear systems in R2

linear systems in R2

Let A ∈ M2(R). The characteristic polynomial has real coefficients and degree 2.
That means that if λ is a complex eigenvalue for A (with nonzero imaginary part),
then so is its conjugate λ̄. Otherwise, A either has two distinct real eigenvalues or
one real eigenvalue with multiplicity 2. In order to exponentiate A, it would be nice
to conjugate A (i.e., apply the mapping A→ P−1AP for some P ) to a matrix that is
close to being diagonal. We will discuss the Jordan form more carefully later, but for
now it suffices to know that there exists an invertible real matrix P such that P−1AP
has one of the three possible forms below:(

u 0
0 v

)
,

(
u 1
0 u

)
, and

(
a −b
b a

)
,

where u, v, a, b ∈ R. The first case occurs when A has eigenvalues u and v (including
the case where u = v occurs with multiplicity 2) and A is diagonalizable. The second
case occurs when A has the real eigenvalue u with multiplicity 2 but the corresponding
eigenspace only has dimension 1. The last case occurs when A has a pair of complex
eigenvalues λ = a + bi and λ = a − bi. (If we were working over C, then in this
last case A could be conjugated to the diagonal matrix diag(λ, λ̄), as we will discuss
below.)

To solve two-dimensional linear systems, we need to exponentiate matrices with these
forms. The first is easy:

exp

(
u 0
0 v

)
=

(
eu 0
0 ev

)
.

For the second, let’s exponentiate a slightly more general matrix:

B :=

(
u v
0 u

)
.

Let

C =

(
0 v
0 0

)
,

57
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and note that (i) B = uI +C, (ii) Ck = 0 for k > 1, and (iii) uI and C commute. It
follows that

eB = euI+C = euIeC =

(
eu 0
0 eu

)
eC = euIeC = eueC

= eu
(
I + C +

1

2
C2 +

1

3!
C3 + . . .

)
= eu (I + C)

=

(
eu veu

0 eu

)
.

Now consider the last case, in which

J =

(
a −b
b a

)
.

Letting

Q =

(
i −i
1 1

)
we have

Q−1JQ =
1

2i

(
1 i
−1 i

)(
a −b
b a

)(
i −i
1 1

)

=
1

2i

(
1 i
−1 i

)(
ai− b −ai− b
a+ bi a− bi

)

=
1

2i

(
2ai− 2b 0

0 2ai+ 2b

)

=

(
a+ bi 0

0 a− bi

)
=

(
λ 0
0 λ̄

)
.

Therefore, using the fact that

eλt = eat+bti = eat(cos(bt) + i sin(bt)) and eλ̄t = eat−bti = eat(cos(bt)− i sin(bt)),

we have

e

 a −b
b a

t
= Qediag(λ,λ̄)tQ−1
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=
1

2i

(
i −i
1 1

)(
eλt 0

0 eλ̄t

)(
1 i
−1 i

)

=
1

2i

(
i −i
1 1

)(
eλt ieλt

−eλ̄t ieλ̄t

)

=
1

2i

(
ieλt + ieλ̄t −eλt + eλ̄t

eλt − eλ̄t ieλt + ieλ̄t

)

= eat
(

cos(bt) − sin(bt)
sin(bt) cos(bt)

)
.

Let’s look at the corresponding systems of differential equations and their solutions
with initial condition x0:

If J =

(
u 0
0 v

)
then the solution is

x(t) =

(
eut 0
0 evt

)
x0.

If both u and v are negative, the origin is a stable node (u = −1, v = −2 displayed):

.

If u and v are both positive, the origin is an unstable node (u = 1, v = 2 displayed):
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.

If one of u and v is negative and the other is positive, the origin is a saddle point
(u = −1, v = 2 displayed):

.

If J =

(
u 1
0 u

)
then

eJt = exp

(
u t
0 u

)
=

(
eu teu

0 eu

)

and the solution is

x(t) =

(
eut teut

0 eut

)
x0.

If u < 0, the origin is a stable node (u = −2 displayed):
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.

and if it is positive, then the origin is an unstable node (u = 2 displayed):

.

If J =

(
a −b
b a

)
then the solution is

x(t) = eat
(

cos(b) − sin(b)
sin(b) cos(b)

)
x0.

If a < 0, then each solution spirals into the origin and we say the origin is a stable
focus (a = −1, b = 2 displayed):
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.

If a > 0, then each solution spirals away from the origin, and we say the origin is an
unstable focus (a = 1, b = 2 displayed):

.

If a = 0, each solution goes in a circle about the origin, and we say that the system
has a center at the origin (a = 0, b = −2 displayed):

.

In any of these cases, if b > 0 the motion is counterclockwise, and if b < 0, the motion
is clockwise.
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We’ve discussed all cases in which both eigenvalues are nonzero. If either of the
eigenvalues is zero, i.e., if det(A) = 0, then the origin is a degenerate equilibrium
point. See our text for pictures of these systems.

Lemma. Let A ∈Mn(F ) with eigenvalues λ1, . . . , λn. Then

1. trace(A) :=
∑n

i=1Aii =
∑n

i=1 λi and det(A) =
∏n

i=1 λi.

2. Consider the characteristic polynomial of A:

p(x) = det(A− xIn).

Then the coefficient of xn−1 in p(x) is (−1)n−1trace(A) and the constant term
of p(x) is det(A).1

Proof. Recall that for all C,D ∈Mn(F ), we have

trace(CD) = trace(DC)

and
det(CD) = det(C) det(D) = det(D) det(C) = det(DC).

Therefore, for all invertible P ∈Mn(F ),

trace(P−1AP ) = trace(A) and det(P−1AP ) = det(A).

Further, the characteristic polynomial is not affected by conjugation:

det(P−1AP−xIn) = det(P−1(A−xIn)P ) = det(P−1) det(A−xIn) det(P ) = det(A−xI).

Therefore, we may assume that A is in Jordan form—an upper triangular matrix.
Considering p(x) = det(A−xI), we see the diagonal entries are the eigenvalues, λ1 . . . , λn.
Part 1 follows. Next, consider the characteristic polynomial

det(A− xIx) = p(x) = (λ1 − x) · · · (λn − x).

Expanding the right-hand side, we see that the coefficient of xn−1 is trace(A). Set-
ting x = 0 in the above equation then completes the proof of part 2.

Let’s now go back to the case n = 2. Let τ := trace(A) and δ := det(A). Up to
conjugation, there are three possibilities:

1The characteristic polynomials is sometimes defined to be p(x) = det(xIn − A). In that case,
the coefficient of xn−1 is −trace(A). The constant term is again det(A).
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(
u 0
0 v

)
τ = u+ v

δ = uv

(
u 1
0 u

)
τ = 2u

δ = u2

(
a −b
b a

)
τ = 2a

δ = a2 + b2

The characteristic polynomial is

p(x) = x2 − τ x+ δ.

So the eigenvalues are

τ ±
√
τ 2 − 4δ

2
. (10.1)

Theorem. (p. 25)

1. If δ < 0, then the origin is a saddle point.

2. If δ > 0 and τ 2 − 4δ ≥ 0, then the origin is a stable node if τ < 0 and an unstable
node if τ > 0. (Note that in this case, the conditions δ > 0 and τ 2 − 4δ ≥ 0
imply τ 6= 0.)

3. If δ > 0 and τ 2 − 4δ < 0, then the origin is a stable focus if τ < 0, an unstable
focus if τ > 0, or a center if τ = 0 (in which case τ − 4δ < 0 is automatic).

Proof. If δ < 0, then equation 10.1 shows that one eigenvalue is positive and the
other is negative. Hence, the origin is a saddle point. That proves the first part. The
others follow similarly.

Calling a stable node or focus a sink and calling an unstable node or focus a source,
we get the following diagram:



65

τ

δ

unstable
focus

stable
focus

stable
node

unstable
node

saddle

degeneratedegenerate degenerate

ce
n
te

r



Week 4, Wednesday: Jordan form

Review of diagonalization. For a diagonal matrix D = diag(λ1, . . . , λn), we have

Dei = λiei

for each standard basis vector ei. If A ∈ Mn(F ) is not diagonal, we look for linearly
independent vectors that behave like the ei above:

Avi = λivi.

If we can find n of these vectors, then changing to the basis {v1, . . . , vn}, these vi are
transformed to the standard basis vectors in the new coordinates, and A is diagonal-
ized.

Therefore, we look for vectors v 6= 0 such that

Av = λv

for some λ ∈ F . We have

Av = λv ⇔ (A− λIn)v = 0 ⇔ v ∈ ker(A− λIn).

The kernel is nonzero if and only if det(A − λIn) = 0. So to find suitable λ, the
eigenvalues, we consider the characteristic polynomial

p(x) = det(A− xIn) =
n∏
j=1

(λj − x) =
∏̀
j=1

(µj − x)kj .

In the expression on the far right, repeated eigenvalues are grouped together (so
each µj is equal to some λt). The algebraic multiplicity of the eigenvalue µj is kj. The
eigenvectors corresponding to µj form a subspace of F n called the eigenspace for µj:

Eµj := ker(A− µjIn).
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The dimension of Eµj is the geometric multiplicity of µj. We always have that the
geometric multiplicity is at most the algebraic multiplicity:

dimEµj ≤ kj.

The matrix A is diagonalizable if and only if there is a basis consisting of eigenvectors,
and that happens exactly when the geometric multiplicity of each eigenvalue equals
it algebraic multiplicity. If that is not the case, we can still choose bases for each
eigenspace, but we are then left with the task of completing this set to a full basis
for F n. By choosing correctly, we can assure that A has a nice form.

jordan form

Let λ ∈ F . A k × k Jordan block for λ is a k × k matrix with λ appearing along the
diagonal and 1s appearing on the superdiagonal:

Jk(λ) :=



λ 1
λ 1

λ 1
. . .

1
λ


.

0

0

For example,

J4(2) =


2 1 0 0
0 2 1 0
0 0 2 1
0 0 0 2

 .

A Jordan matrix is a square block-diagonal matrix with Jordan matrices along the
diagonal:

J :=



Jk1(λ1)
Jk2(λ2)

Jk3(λ3)
. . .

Jk`(λ`).


.

0

0
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For example, the following is a Jordan matrix:

2 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0
0 0 4 1 0 0 0 0
0 0 0 4 1 0 0 0
0 0 0 0 4 0 0 0
0 0 0 0 0 i 1 0
0 0 0 0 0 0 i 0
0 0 0 0 0 0 0 2 + 3i


with Jordan blocks J1(2), J1(2), J3(4), J2(i) and J1(2 + 3i).

A diagonal matrix is a Jordan matrix whose Jordan blocks are all 1× 1.

Theorem. Let A ∈Mn(C). Then there exists an invertible matrix P ∈Mn(C) such
that P−1AP = J where J is a Jordan matrix. The matrix J is called the Jordan
form for A. It is unique up to a permutation of the Jordan blocks. The diagonal
entries of J are exactly the eigenvalues of A repeated according to their algebraic
multiplicities (the number of times the eigenvalue appears in a factorization of the
characteristic polynomial of A over C). The number of blocks having a particular
eigenvalue λ along the diagonal is the geometric multiplicity of λ (i.e., dim(A−λIn)).

Example. A matrix is diagonalizable if and only if each of its Jordan blocks is 1×1.
For example, we know

A =

(
1 1
0 1

)
is not diagonalizable since it is already in Jordan form and it’s not diagonal. The
matrix A has one eigenvalue, 1, of multiplicity 2, but the dimension of the eigenspace
for 1 is 1-dimensional:

ker(A− 1 · I2) = ker

(
0 1
0 0

)
= {(x, 0) : x ∈ F} ,

which has basis {(1, 0)}. As claimed the number of Jordan blocks for 1 is the geometric
multiplicity of 1.

Jordan form over the reals. Now suppose that A ∈ Mn(R). Then it turns out
that we can conjugate A via a real matrix it to a real matrix that is almost as nice
as the Jordan form over C. Since A is defined over the reals, its nonreal eigenvalues
appear in conjugate pairs, and it turns out that each k×k Jordan block for λ = a+bi
has a corresponding k×k Jordan block for λ̄ = a− bi of the same dimension. We can
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combine these blocks and change basis to get a corresponding 2k × 2k block matrix
with 2× 2 blocks of the form (

a −b
b a

)
along the diagonal, and the 2×2 identity matrix I2 appearing along the super diagonal.
For instance, the Jordan matrix

λ 1 0 0 0 0
0 λ 1 0 0 0
0 0 λ 0 0 0
0 0 0 λ̄ 1 0
0 0 0 0 λ̄ 1
0 0 0 0 0 λ̄


where λ = a+ bi can be conjugated to the form

a −b 1 0 0 0
b a 0 1 0 0
0 0 a −b 1 0
0 0 b a 0 1
0 0 0 0 a −b
0 0 0 0 b a


If A ∈ Mn(R), there exists an invertible P ∈ Mn(R) such that P−1AP = J where J
consists of Jordan blocks—the usual ones for real eigenvalues, and these modified
block matrices for conjugate pairs of complex eigenvalues. The form is unique up to
permutation of the blocks and swaps(

a −b
b a

)
←→

(
a b
−b a

)
.

We will call it the real Jordan form for A. Here is a typical real Jordan form for a
real matrix: 

4 0 0 0 0 0 0 0 0 0
0 4 1 0 0 0 0 0 0 0
0 0 4 1 0 0 0 0 0 0
0 0 0 4 0 0 0 0 0 0
0 0 0 0 3 −2 0 0 0 0
0 0 0 0 2 3 0 0 0 0
0 0 0 0 0 0 3 −2 1 0
0 0 0 0 0 0 2 3 0 1
0 0 0 0 0 0 0 0 3 −2
0 0 0 0 0 0 0 0 2 3


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There are two Jordan blocks for 4: one is 1×1 and one is 3×3. The other eigenvalues
for this matrix are 3+2i and 3−2i, each of which appears with multiplicity 3. Notice
there are two real Jordan blocks for the pair 3±2i, one is 2×2 and the other is 4×4.



Week 4, Friday: Exponentiating Jordan matrices. Algorithm
for computing Jordan form

exponentiation of jordan matrix

To solve the linear system x′ = Ax, we need to compute eAt. If P−1AP = J where J
is the Jordan form of A, then eAt = PeJtP−1. Then, to exponentiate J , we must
exponentiate each of its blocks. If

J :=



Jk1(λ1)
Jk2(λ2)

Jk3(λ3)
. . .

Jk`(λ`)


,

0

0

then

eJt :=



eJk1 (λ1)t

eJk2 (λ2)t

eJk3 (λ3)t

. . .

eJk` (λ`t)


.

0

0

Thus, we are reduced to exponentiating Jordan blocks, which we talk about here,
starting with an example. Let λ ∈ F and consider the Jordan block

J4(λ) =


λ 1 0 0
0 λ 1 0
0 0 λ 1
0 0 0 λ

 =


λ 0 0 0
0 λ 0 0
0 0 λ 0
0 0 0 λ

+


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 = λI4 +N4
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where

N4 =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 .

Since λI4 and N4 commute,

eJ4(λ)t = e(λI4+N4)t = eλtI4etN4 .

As usual,

eλtI4 =


eλt 0 0 0
0 eλt 0 0
0 0 eλt 0
0 0 0 eλt

 = eλtI4.

So we are left with computing etN4 :

eN4t = I4 + tN4 +
t2

2!
N2

4 +
t3

3!
N3

4 +
t4

4!
N4

4 +
t5

5!
N5

4 + · · ·

Consider the powers of N4:

N2
4 =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0




0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0



N3
4 =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0




0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0


N4

4 = 0.

All higher powers of N4 are 0. Notice how as we take powers, the diagonal of 1s
climbs up to the right along successively higher diagonals.

Returning to the calculation,

eJ4(λt) = eλt
(
I4 + tN4 +

t2

2!
N2

4 +
t3

3!
N3

4

)
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= eλt


1 t t2

2!
t3

3!

0 1 t t2

2!

0 0 1 t

0 0 0 1

 =


eλt teλt t2

2!
eλt t3

3!
eλt

0 eλt teλt t2

2!
eλt

0 0 eλt teλt

0 0 0 eλt

 .

For instance, the solution to x′ = J4(λ)x with initial condition x0 = (4, 3, 2, 1) is

x(t) = eJ4(λ)tx0

= eλt


1 t t2

2!
t3

3!

0 1 t t2

2!

0 0 1 t

0 0 0 1




4
3
2
1



= eλt


4 + 3t+ 2 t

2

2!
+ t3

3!

3 + 2t+ t2

3!

2 + t
1

 ,

or

x(t) = eλt
(

4 + 3t+ 2
t2

2!
+
t3

3!
, 3 + 2t+

t2

3!
, 2 + t, 1

)
.

Now consider a general Jordan block:

Jk(λ) = λIk +Nk

where Nk is the matrix with 1s along the superdiagonal. As before, taking powers
of Nk causes the diagonal of 1 to march up to the right, and we get Nk

k = 0. A
matrix N such that Nk = 0 is called nilpotent. The minimum k such that Nk = 0 is
the degree of nilpotency. Thus, Nk is nilpotent of degree k. We have

eJk(λ)t = e(λIk+Nk)t = eλtIkeNkt

= eλt
(
Ik + tNk +

t2

2
N2
k +

t3

3!
N3
k + · · ·+ tk−1

(k − 1)!
Nk−1
k

)
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= eλt



1 t t2

2!
. . . . . . tk−1

(k−1)!

0 1 t . . . . . . tk−2

(k−2)!

0 0 1 . . . . . . tk−3

(k−3)!

. . .
...

...
...

0 . . . . . . 0 1 t

0 . . . . . . . . . 0 1


.

Note. If the real part of λ is negative, notice how

lim
t→∞

eJk(λ)t = 0.

Working exclusively over the reals, we will need to exponentiate Jordan blocks corre-
sponding to pairs of conjugate eigenvalues. Let

M :=

(
a −b
b a

)
and consider a real Jordan block for λ = a+ bi with b 6= 0:

J :=



M I2 0 . . . . . . 0

0 M I2 . . . . . . 0

0 0 M . . . . . . 0

. . .
...

...
...

0 . . . . . . 0 M I2

0 . . . . . . . . . 0 M


.

To exponentiate, let

R :=

(
cos(bt) − sin(bt)
sin(bt) cos(bt)

)
.

So

eMt = eatR.

By an argument that is essentially the same as just given above, we get the matrix
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of 2× 2 blocks

eJt = eat



R tR t2

2!
R . . . . . . tk−1

(k−1)!
R

0 R tR . . . . . . tk−2

(k−2)!
R

0 0 R . . . . . . tk−3

(k−3)!
R

. . .
...

...
...

0 . . . . . . 0 R tR

0 . . . . . . . . . 0 R


.

Again, notice that if Re(λ) = a < 0, then

lim
t→∞

eJt = 0.

Algorithm for computing the Jordan form. Our book has a careful discussion
of an algorithm for computing the Jordan form of a matrix A. We will not go into
the details (unless there is demand for it!). Here, we’ll give over a couple of points,
though. To start the algorithm, compute the eigenvalues of the matrix by finding the
zeros of the characteristic polynomial. We would like to know the number of Jordan
blocks for each eigenvalue and their sizes. The key to this is as follows: Let λ be an
eigenvalue, and consider the sequence of integers

δ` := δ`(λ) := dim ker(A− λI)`

for ` = 0, 1, 2, . . . . These δ` are invariant with respect to conjugation, so we
might as well imagine that A is in Jordan form already and work block-
by-block. For a Jordan block Jk(µ) with µ 6= λ,

ker(Jk(µ)− λI)` = 0

for all ` since each diagonal entry of each power is nonzero. So the δ`(λ) for any block
like this are all 0. Now consider each Jordan block of the form Jk(λ). We have

ker(Jk(λ)− λI)` = kerN `
k

where Nk is the nilpotent matrix from earlier. Thinking about the form of N `
k is it

easy to see that the δ` sequence for blocks like these is

δ` =

{
` for 0 ≤ ` ≤ k,

k for ` > k.
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k (A− λI)k basis for kernel dimension

1


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 e1 1

2


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 e1, e2 2

3


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 e1, e2, e3 3

4


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 e1, e2, e3, e4 4.

Figure 12.1: The case where A = J4(λ).

See Figure 12.1 for the case where k = 4.

The δ`(λ)-sequence for A is the sum of the δ`(λ)-sequences for each of its Jordan
blocks. For instance, δ1(λ) for A is the number of its Jordan blocks for λ—we’ve just
seen that each of these contributes its δ1 = 1 to the count. With just a little more
thought (see our text), letting νk be the number of k × k Jordan blocks for λ for
the n× n matrix A, we get

νk =


2δ1 − δ2 for k = 1,

2δk − δk+1 − δk−1 for 1 < k < n,

δn − δn−1 for k = n.

The point is that the numbers of Jordan blocks of each size for each eigenvalue are
determined by the δ-sequences, i.e, by the sequence of dimensions of the kernels,
ker(A− λI)`.
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To actually conjugate A to Jordan form, for each eigenvalue λ, we consider the tower
of subspaces

ker(A− λI) ⊆ ker(A− λI)2 ⊆ ker(A− λI)3 ⊆ . . .

Starting at the leftmost kernel in this tower of subsets, we could successively build
bases for these kernels, adding vectors as we move to the right, as we could see
earlier in the case where A = J4(λ). Appropriately chosen, these vectors are called
generalized eigenvectors. We use them as columns of a matrix P so that P−1AP is
the Jordan form for A

Let’s consider the case where

A = J4(λ) =


λ 1 0 0
0 λ 1 0
0 0 λ 1
0 0 0 λ

 .

Notice that we have

Ae1 = λe1, Ae2 = e1 + λe2, Ae3 = e2 + λe3, Ae4 = e3 + λe4.

Therefore,

(A− λI)e1 = 0

(A− λI)e2 = e1

(A− λI)e3 = e2

(A− λI)e4 = e3,

and (A−λI)i+1ei = 0 for i = 2, 3, 4. So if A is not in Jordan form already, we will look
for vectors v1, . . . , v4 that behave like the ei, above. We need to solve (A−λI)vi = vi−1

starting with v1 an eigenvector with eigenvalue λ. These vi will be columns in the
matrix P .



Week 5, Monday: Stability theory. Linear systems in R3.
Nonhomogeneous equations

Stability

Let A ∈Mn(C). For each eigenvalue λ ∈ C, the generalized eigenspace for λ is

Vλ = {v ∈ Cn : (A− λI)kv = 0 for some k > 0}.

We can choose bases Bλ for the generalized eigenspaces resulting in a basis B = ∪λBλ
for Cn with respect to which the matrix A attains its Jordan form. Define the stable,
center, and unstable spaces for A respectively by

Es = Span ∪λ:Re(λ)<0 Bλ

Ec = Span ∪λ:Re(λ)=0 Bλ

Eu = Span ∪λ:Re(λ)>0 Bλ.

Since B is a basis, we can write

Cn = Es ⊕ Ec ⊕ Eu,

i.e., every v ∈ Cn can be written uniquely as v = vs + vc + vu where vs ∈ Es, vc ∈ Ec,
and vu ∈ Eu.

If A is a real matrix and we are working over the real numbers, then define the
(real) stable, center, and unstable spaces for A by intersecting each of Es, Ec, and Eu

with Rn. Not that if A is real, is nonreal eigenvalues will occur in conjugate pairs a±bi,
and the conjugates have the same real part. We can also adjust the basis B so that
with respect to B, the matrix A has its real Jordan form.

If L : F n → F n is a linear function and W ⊆ F n, we say that W is invariant under L
if L(W ) ⊆ W . If M is the matrix representing L, we similarly say that W is invariant
under M if Mw ∈ W for all w ∈ W .

Proposition. Each generalized eigenspace, the stable, center, and unstable spaces
are invariant under A and under eAt for all t ∈ R.
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Proof. Staring at the Jordan form for A and its exponential makes this result obvious,
but we will give a formal proof. First consider the action of A. Fix an eigenvalue λ
for A and consider the corresponding generalized eigenspace Vλ. Let v ∈ Vλ. To show
that Av ∈ Vλ, we first let w = (A − λ I)v. We claim that w ∈ Vλ. To see this,
take k > 0 such that (A − λ I)kv = 0. Then (A − λ I)k−1w = 0 (in the special case
where k = 1, we have (A − λ I)0w = (A − λ I)v = w = 0 ∈ Vλ). Since v, w ∈ Vλ
and Vλ is a subspace,

Av = λ v + w ∈ Vλ.

This shows that Vλ is invariant under A. Now since each of the stable, center, and
unstable spaces is formed by taking the linear span of bases for certain generalized
eigenspaces, it follows that each of these is invariant under A. It follows that they
are invariant under eAt by homework.

Thus, let x(t) be the solution to the initial value problem x′ = Ax, x(0) = x0, i.e., let
x(t) = eAtx0. It follows that if x0 ∈ Es, then x(t) ∈ Es for all t. The solution never
leaves the stable space. Similarly, a solution starting in the center or the unstable
space never leaves that space. Further, from the Jordan form, one sees that

x0 ∈ Es \ {0} =⇒ lim
t→∞

x(t) = 0 and lim
t→−∞

|x(t)| =∞

x0 ∈ Eu \ {0} =⇒ lim
t→∞
|x(t)| =∞ and lim

t→−∞
x(t) = 0.

In particular, if all eigenvalues of A have negative real part, then all solutions, no
matter what the initial condition, are drawn into the origin. If all eigenvalues have
positive real part, all solutions with non-zero initial condition will eventually leave
any fixed compact set.

linear systems in R3

Linear systems in R3. Let A ∈ M3(R). Then A either has three real eigenvalues
(counting multiplicities) or it has a single real eigenvalue and pair of conjugate nonreal
eigenvalues. Therefore, the possibilities for the Jordan form and for the solutions
to x′ = Ax up to a linear change of coordinates are:

I. u, v, w ∈ R:

J =

 u 0 0
0 v 0
0 0 w

 x(t) = eJtx0 =

 eut 0 0
0 evt 0
0 0 ewt

x0.

The behavior of the various trajectories will depend on the signs of u, v, w, with
saddle-like behavior if they don’t all have the same sign.



80 CHAPTER 13. WEEK 5, MONDAY

II. u, v ∈ R:

J =

 u 1 0
0 u 0
0 0 v

 x(t) = eJtx0 =

 eut teut 0
0 eut 0
0 0 evt

x0.

III. u ∈ R:

J =

 u 1 0
0 u 1
0 0 u

 x(t) = eJtx0 =

 eut teut t2

2
eut

0 eut teut

0 0 eut

x0.

IV. a, b, u ∈ R and b 6= 0:

J =

 a −b 0
b a 0
0 0 u

 x(t) = eJtx0 =

 eat cos(bt) −eat sin(bt) 0
eat sin(bt) eat cos(bt) 0

0 0 eut

x0.

An interesting special case is where a = 0.

We will take a look at examples of all of these in class.

nonhomogeneous systems

Proposition. Let A ∈Mn(F ) and consider the system

x′(t) = Ax(t) + b(t)

where t 7→ b(t) ∈ F n is continuous. The solution with initial condition x0 is

x(t) = eAtx0 + eAt
∫ t

s=0

e−Asb(s) ds.

The solution is unique.

Proof. Defining x(t) as above, use the product rule and the fundamental theorem of
calculus to see

x′(t) =
(
eAtx0

)′
+
(
eAt
)′ ∫ t

s=0

e−Asb(s) ds+ eAt
(∫ t

s=0

e−Asb(s) ds

)′
= AeAtx0 + AeAt

∫ t

s=0

e−Asb(s) ds+ eAte−Atb(t)

= AeAtx0 + AeAt
∫ t

s=0

e−Asb(s) ds+ eAte−Atb(t)
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= A

(
eAtx0 + eAt

∫ t

s=0

e−Asb(s) ds

)
+ b(t)

= Ax(t) + b(t).

Uniqueness of the solution will be a homework problem.



Week 5, Wednesday: Nonhomogeneous equations

nonhomogeneous systems

Proposition. Let A ∈Mn(F ) and consider the system

x′(t) = Ax(t) + b(t)

where t 7→ b(t) ∈ F n is continuous. The solution with initial condition x0 is

x(t) = eAtx0 + eAt
∫ t

s=0

e−Asb(s) ds.

The solution is unique.

Proof. Given in the last lecture: just take the derivative of the above expression.
Uniqueness is a homework problem.

Note. Our text has references for a system as in the Proposition but for which A =
A(t), i.e., A varies with t, too.

Example. Here is an example from our text for an equation modeling a forced
harmonic oscillator:

x′′ = −x+ f(t).

Writing x1 = x and x2 = x′1, we have

x′2 = x′′1 = −x+ f(t) = −x1 + f(t).

Hence, we consider the system

x′1 = x2

x′2 = −x1 + f(t)

or let

y :=

(
x1

x2

)
=

(
x
x′

)
82
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and consider the system

y′ =

(
0 1
−1 0

)
y +

(
0
f(t)

)
.

So we apply the proposition with

A =

(
0 1
−1 0

)
and b(t) =

(
0
f(t)

)
.

Thus,

eAt =

(
cos(t) sin(t)
− sin(t) cos(t)

)
,

and

y(t) = eAty0 + eAt
∫ t

s=0

e−Asb(s) ds

=

(
cos(t) sin(t)
− sin(t) cos(t)

)
y0

+

(
cos(t) sin(t)
− sin(t) cos(t)

)∫ t

s=0

(
cos(s) − sin(s)
sin(s) cos(s)

)(
0

f(s)

)
ds

=

(
cos(t) sin(t)
− sin(t) cos(t)

)
y0 +

(
cos(t) sin(t)
− sin(t) cos(t)

)∫ t

s=0

(
−f(s) sin(s)
f(s) cos(s)

)
ds.

The initial condition is y0 = (x1(0), x2(0)) = (x(0), x′(0)). We take the first compo-
nent of the above 2× 1 matrix to get the solution:

x(t) = x(0) cos(t) + x′(0) sin(t)

+ cos(t)

(
−
∫ t

s=0

f(s) sin(s) ds

)
+ sin(t)

(∫ t

s=0

f(s) cos(s) ds

)
= x(0) cos(t) + x′(0) sin(t) +

∫ t

s=0

f(s) (− cos(t) sin(s) + sin(t) cos(s)) ds.

Now use the sum formula

sin(θ + ψ) = cos(θ) sin(ψ) + cos(ψ) sin(θ)

with θ = t and ψ = −s to get

x(t) = x(0) cos(t) + x′(0) sin(t) +

∫ t

s=0

f(s) sin(t− s) ds.
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For a special case, suppose that f(s) = cos(ωt). The solution is then

x(t) = x(0) cos(t) + x′(0) sin(t) +

∫ t

s=0

cos(ωs) sin(t− s) ds.

To integrate this, note that

sin(θ + ψ) + sin(θ − ψ) = cos(θ) sin(ψ) + cos(ψ) sin(θ)

− cos(θ) sin(ψ) + cos(ψ) sin(θ)

= 2 cos(ψ) sin(θ).

Therefore,

cos(ψ) sin(θ) =
1

2
(sin(θ + ψ) + sin(θ − ψ)) .

It follows that∫ t

s=0

cos(ωs) sin(t− s) ds =
1

2

∫ t

s=0

sin(t+ (ω − 1)s) + sin(t− (ω + 1)s) ds

=
1

2

(
−cos(t+ (ω − 1)s)

ω − 1
+

cos(t− (ω + 1)s)

ω + 1

)∣∣∣∣t
s=0

=
cos(ωt)− cos(t)

1− ω2
.

So the solution is

x(t) = x(0) cos(t) + x′(0) sin(t) +
cos(ωt)− cos(t)

1− ω2
.
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Unforced: x(0) = x′(0) = 1, f(t) = 0



85

−40 −20 20 40

−2

−1

1

2
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x(0) = x′(0) = 1, f(t) = te−0.01t



Week 5, Friday: Higher-order homogeneous linear equations
with constant coefficients

Consider the 4th order linear homogeneous equation with constant coefficients:

y(iv) + a3y
′′′ + a2y

′′ + a1y
′ + a0y = 0 (15.1)

with initial condition y(i)(0) = bi for i = 0, 1, 2, 3.

Let xi = y(i−1) for i = 1, 2, 3, 4, and let x(t) = (x1(t), . . . , x4(t)). Use equation (15.1)
to create a linear system:

x′ = Ax

with initial condition x(0).

problem 1. What is the 4× 4 matrix A? And what is x(0) in terms of y?

Problem 2. The solution to the above system is x(t) = eAtx0. Suppose you have
calculated eAt. How do read off the solution to our original equation (15.1)?
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According to the recipe we learned during the first couple of weeks of class, to solve
equation (15.1), we first consider its characteristic polynomial P (x) = x4 + a3x

3 +
a2x

2 + a1x + a0. We would like to compare P (x) to pA(x) := det(A − xI4), the
characteristic polynomial for the matrix A.

problem 3. Compute det(A − xI4) by first performing the following column op-
erations (which don’t affect the value of the determinant): add x times the second
column to the first column, then add x2 times the third column to the first column,
then add x3 times the fourth column to the first column. (i) What is the result? The
first column should consist of zeros except for the last entry. (ii) What is this last
entry? (iii) Compute the determinant by expanding along the first column. What do
you get? (iv) What would you get if instead of starting with a 4-th degree equation,
we started with an n-th degree equation?
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Let λ be an eigenvalue for A, and consider the corresponding eigenspace,

Eλ =
{
v ∈ F 4 : Av = λv

}
.

problem 4. Prove that

Eλ = Span
{

(1, λ, λ2, λ3)
}
.

Thus, dimEλ = 1, i.e., the geometric multiplicity of λ is 1. (Hint: let v = (v1, . . . , vn)
and then compare components on both sides of the equation Av = λv.)
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Suppose thatA has k distinct eigenvalues λ1, . . . , λk over C with multiplicitiesm1, . . . ,mk,
respectively. So the characteristic polynomial factors as pA(x) =

∏k
i=1(λi − x)mi .

Problem 5. Why do we know that the Jordan form for A over the complex numbers
is 

Jm1(λ1)
Jm2(λ2)

. . .

Jmk
(λk)

?

0
0

Problem 6. Define the basic functions for equation (15.1) to be{
tjeλit : 0 ≤ j < mi, 1 ≤ i ≤ k

}
.

Prove that every solution to equation (15.1) is a linear combination of these basic
functions.
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We would like to show that each of the basic functions is a solution to equation (15.1).
Consider the differential operator D := d

dt
. We can write equation (15.1) as

P (D)y = 0

where P (D) = x4 + a3x
3 + a2x

2 + a1x+ a0. Further, we know (why?) that

P (D) =
k∏
i=1

(D − λi)mi .

Problem 7.

(a) Prove by induction that for every sufficiently differentiable function f(t), we have

(D − λ)k(f(t)eλt) = eλtDkf(t)

for k ≥ 0.
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(b) Show that it follows that

P (D)(f(t)eλt) = eλtP (D + λ)f(t).

(c) Use these results to show that each basic function is a solution to equation (15.1).
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Finally, we’d like to show that each solution to equation (15.1) with the given initial
condition is a unique linear combination of the basic functions. To do so, list the
basic functions in some order f1, f2, f3, f4. For each α = (α1, α,α3, α4) ∈ C4, consider
the solution

sα(t) = α1f1 + α2f2 + α3f3 + α4f4,

and, in general, define

φα : C4 → C4

α 7→ (s(0), s′(0), s′′(0), s′′′(0)).

It’s clear that φ is linear (since differentiation and evaluation are linear).

Problem 8. You have already shown that is φ surjective. How? Why does it then
follow that φ injective? How does this prove uniqueness?



Week 6, Monday: Higher-order homogeneous linear equations
with constant coefficients

n-th order linear homogeneous equations revisited

Consider the homogeneous linear equation

y(n) + an−1y
(n−1) + · · ·+ a1y

′ + a0y = 0 (16.1)

with initial condition y(i)(0) = bi for i = 0, 1, . . . , n−1. Recall the method of solution
introduced during the first two weeks of class. First we factor the characteristic
polynomial

P (x) =
k∏
i=1

(x− λi)mi ,

where the λi are distinct. We claimed that the most general solution was an arbitrary
linear combination of the basic functions

eλit, teλit, . . . , tmi−1eλit

for i = 1, . . . , k. We also claimed that for each initial condition, there would be a
unique solution. We now want to justify those claims.

Define
x1 := y, x2 := y′, x3 := y′′, . . . , xn := y(n−1).

We get a corresponding matrix equation

x′1
x′2
x′3
...

x′n−1

x′n


=



0 1
0 1

0 1
. . . . . .

0 1
−a0 −a1 −a2 . . . −an−2 −an−1





x1

x2

x3
...

xn−1

xn


.0

0
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Let A denote the n×nmatrix above, and we can consider the differential equation x′ =
Ax with initial condition x0 = x(0) = (y(0), y′(0), . . . , y(n−1)(0)) = (b0, b1, . . . , bn−1).
The solution is

x(t) = eAtx0,

and the first component of this solution is x1(t) = y(t), the solution to the original
homogeneous system.

Proposition. Let P (x) =
∑n

i=0 aix
i be the characteristic polynomial for the linear

homogeneous equation (16.1). Then the characteristic polynomial for A is

pA(x) := det(A− xIn) = (−1)n+1P (x).

Proof. We have

A− xInA =



−x 1
−x 1

−x 1
. . . . . .

−x 1
−a0 −a1 −a2 . . . −an−2 −x− an−1

0
0

Multiply the second column by x and add it to the first column; then multiply the
third column by x2 and add it to the first column; and so on. This does not affect the
determinant, and the rows of the first column are all 0 now except the last, which is

−a0 − a1x− a2x
2 − · · · − an−2x

n−2 − (x+ an−1)xn−1 = −P (x).

It follows that

det(A− xIn) = det



0 1
0 −x 1
0 −x 1
...

. . . . . .

0 −x 1
−P (x) −a1 −a2 . . . −an−2 −an−1 − x

0
0

Expand along the first column to get the result.



95

In order to solve the system, we are interested in the Jordan form for A. So we think
about this next.

Proposition. Let λ be an eigenvalue for A. Then the corresponding eigenspace is

Eλ = Span{(1, λ, λ2, . . . , λn−1)}

and is, hence, one-dimensional. So the geometric multiplicity of each eigenvalue for A
is 1.

Proof. Suppose that Av = λv where v = (v1, . . . , vn). Note that

Av =



0 1
0 1

0 1
. . . . . .

0 1
−a0 −a1 −a2 . . . −an−2 −an−1





v1

v2

v3
...

vn−1

vn


= λ



v1

v2

v3
...

vn−1

vn


= λv

says v2 = λv1, v3 = λv2, . . . , vn = λvn−1. Thus,

v = (v1, λv1, λ
2v1, . . . , λ

n−1v1)

= v1(1, λ, λ2, . . . , λn−1).

Corollary. Suppose that A has distinct eigenvalues λ1, . . . , λk (over C) with algebraic
multiplicities, m1, . . . ,mk, respectively, so the its characteristic polynomial is

pA(x) =
k∏
i=1

(λi − x)mi .

Then the Jordan form for A is
Jm1(λ1)

Jm2(λ2)
. . .

Jmk
(λk)

 .

0
0
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Proof. This follows immediately from the preceding Proposition. The diagonal of the
Jordan form consists of the eigenvalues of A, repeated according to multiplicities. For
each Jordan block, there is a corresponding eigenvector for A (and several generalized
eigenvectors). If there where more than one Jordan block for a particular eigenvalue λ,
there would be more than one linearly independent eigenvector for λ, and we’ve just
seen that this cannot happen—each eigenspace has dimension 1.

Theorem. Suppose the roots for the characteristic polynomial for equation (16.1)
or, equivalently, the eigenvalues for A are λ1, . . . , λk with multiplicities m1, . . . ,mk,
respectively. Every solution to equation (16.1) (with a given initial condition) is a
unique linear combination of the basic functions{

tjeλit : 0 ≤ j < mi, 1 ≤ i ≤ k
}
, (16.2)

and each linear combination of these functions is a solution for some initial condition.

Proof. There are three parts to this proof: (i) show each solution is a linear com-
bination of the basic functions; (ii) show each basic function satisfies the differential
equation (16.1); and (iii) show the basic equations are linearly independent.

(i) The solution to equation (16.1) is the first component of eAtx0. Letting P−1AP = J
be the Jordan form for A, the solution is

y(t) = eAtx0 = PeJtP−1,

and hence, is a linear combination of the entries of eJt. The result then follows from
the previous corollary recalling that

eJmi (λit) = eλit



1 t t2

2!
. . . . . . tmi−1

(mi−1)!

0 1 t . . . . . . tk−2

(mi−2)!

0 0 1 . . . . . . tk−3

(mi−3)!

. . .
...

...
...

0 . . . . . . 0 1 t

0 . . . . . . . . . 0 1


.

(ii) Consider the differential operator D := d
dt

. We can write equation (16.1) as

P (D)y = 0
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where P (D) = xn + an−1x
n−1 + · · ·+ a1x+ a0. We are given that

P (D) =
k∏
i=1

(D − λi)mi .

That the basic functions satisfy the differential equation P (D)y = 0 is left as home-
work. It follows from two facts (which are part of the homework problem):

1. (D − α)(D − β)f(t) = (D − β)(D − α)f(t) for every sufficiently differentiable
function f(t) and pair of constants α and β.

2. P (D)(f(t)eλt) = eλtP (D+λ)(f(t)) for every sufficiently differentiable function f(t)
and constant λ.

(iii) For uniqueness, list the n functions in (16.2) in some order f1, . . . , fn, and consider
the mapping φ : Cn → Cn defined as follows: for each (α1, . . . , αn) ∈ Cn, consider the
solution

sα(t) = α1f1 + . . . αnfn,

and let
φ(α1, . . . , αn) := (sα(0), s′α(0), . . . , s(n−1)

α (0)) ∈ Cn.

Since taking differentiation and evaluation are both linear operations, φ is linear.
It is surjective since we know from part (ii) that we can find a solution as a linear
combination of f1, . . . , fn for each initial condition. Since φ is linear and has rank 4,
i.e., dim(imφ) = 4, the rank-nullity theorem says that the kernel of φ is trivial. So φ
is injective. Now take any two solutions that satisfy the same initial conditions. Each
of these solutions is a linear combination of the basic functions, so they have the
form sα and sβ for some α, β ∈ Cn. Since they satisfy the same initial condition, we
have φ(α) = φ(β). Since φ is injective, we have α = β.



Week 6, Wednesday: Existence and uniqueness for non-linear
systems

nonlinear systems

Let E ⊆ Rn be an open subset of Rn and let C(E) denote the vector space of
continuous functions of the form E → Rn. Given f ∈ C(E), we are now interested in
solutions to the differential equation

x′ = f(x). (17.1)

The function f is a vector field in Rn defined on E. We have just finished studying
the linear case of this problem, i.e., in which f(x) = Ax for some A ∈ Mn(Rn) and
are now particularly interested in the case where f is no longer a linear function.

A solution to equation (17.1) on an interval I is a function x : I → E ⊆ Rn such that

x′(t) = f(x(t))

for all t ∈ I. Given t0 ∈ I with x(t0) = x0 ∈ E, we say the solution satisfies the
initial value problem

x′ = f(x)

x(t0) = x0

on I.

Example. Consider the (non-linear) system

x′ = x2 − y
y′ = xy

with initial value (x(0), y(0)) = (0.5, 1). So in this case, the relevant vector field is
f(x, y) = (x2− y, xy). Here is a plot of the vector field and the solution to the initial
value problem:
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Note that this system displays behavior one would not see in the linear case.

The systems we are studying are called autonomous since f is a function of x ∈ Rn

and not t. However, a nonautonomous system

x′ = g(x, t)

can be converted to an autonomous system by letting xn+1 := t and x′n+1 = 1.

Goals. Our first main goal is to find conditions under which the initial value problem
for equation (17.1) has a unique solution. After that, we’ll discuss how solutions
change if f changes a small amount and discuss the size of the interval on which a
solution exists.

New behavior. In the linear case, x′ = Ax and x(0) = x0, we saw that there is
always a unique solution. That’s no longer generally true in the nonlinear case. For
instance, the following initial value problem

x′ = 3x2/3

x(0) = 0

has two solutions: x(t) = 0 and x(t) = t3. We’ll see that the source of non-uniqueness
here is that f(x) = 3x2/3 is not continuously differentiable: f ′(x) = 2x−1/3, which is
not continuous at 0.

Even if f ′ is continuous everywhere, the solution may only exist on subintervals of
the real line, again unlike the linear situation. For example, consider the system

x′ = x2

x(0) = 1.
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The solution is

x(t) =
1

1− t
but is only defined on the interval (−∞, 1). The solution blows up as t→ 1−.

Key idea. We have solved the initial value problem for equation (17.1) if we can
find a continuous function x(t) satisfying

x(t) = x0 +

∫ t

s=0

f(x(s)) ds

for all t ∈ [−a, a] for some a > 0.

Check: First, by the fundamental theorem of calculus

x′(t) = (x0)′ +

(∫ t

s=0

f(x(s)) ds

)′
= 0 + f(x(t)) = f(x(t)).

Next,

x(0) = x0 +

∫ 0

s=0

f(x(s)) ds = x0.

The method of successive approximations attempts to create a sequence of func-
tions (uk(t))k≥0 converging to a solution:

u0(t) := x0

uk+1(t) := x0 +

∫ t

s=0

f(uk(s)) ds, for k ≥ 0.

Example. Consider the initial value problem

x′ = xt, x(0) = 1.

This is an autonomous equation, so we first convert it to a nonautonomous system
by letting x1 = x and x2 = t. The system becomes(

x′1
x′2

)
=

(
x1x2

1

)
=: f(x1, x2)

with initial condition x1(0) = x(0) = 1 and x2(0) = 0 (since x2 = t).

Apply the method of successive approximations starting with

u0(t) =

(
x1(0)
x2(0)

)
=

(
1
0

)
.
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We get

u1(t) =

(
1
0

)
+

∫ t

s=0

f(u0(s)) ds

=

(
1
0

)
+

∫ t

s=0

(
0
1

)
ds

=

(
1
0

)
+

(
c
s

)∣∣∣∣t
s=0

=

(
1
0

)
+

(
0
t

)
=

(
1
t

)
.

Next,

u2(t) =

(
1
0

)
+

∫ t

s=0

f(u1(s)) ds

=

(
1
0

)
+

∫ t

s=0

f(1, s) ds

=

(
1
0

)
+

∫ t

s=0

(
s
1

)
ds

=

(
1
0

)
+

(
s2/2
s

)∣∣∣∣t
s=0

=

(
1 + t2/2

t

)
.

Next,

u3(t) =

(
1
0

)
+

∫ t

s=0

f(u2(s)) ds

=

(
1
0

)
+

∫ t

s=0

f(1 + s2/2, s) ds

=

(
1
0

)
+

∫ t

s=0

(
s+ s3/2

1

)
ds

=

(
1
0

)
+

(
s2/2 + s2/(2 · 4)

s

)∣∣∣∣t
s=0
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=

(
1 + t2/2 + t4/(2 · 4)

t

)
.

Similarly,

u4 =

(
1 + t2/2 + t4/(2 · 4) + t6/(2 · 4 · 6)

t

)
,

and so on. Recall that x1 = x, and x is the function we are trying to find. Thus, we
are interested in the limit of the first components of the uk. The method of successive
approximations is delivering

x(t) = 1 +
t2

2
+

t4

2 · 4
+

t6

2 · 4 · 6
+

t8

2 · 4 · 6 · 8
+ . . .

= 1 +
t2

2
+

t4

(1 · 2)22
+

t6

(1 · 2 · 3)23
+

t8

(1 · 2 · 3 · 4)23
+ . . .

= 1 +
t2

2
+

1

2!

(
t2

2

)2

+
1

3!

(
t2

2

)3

+
1

4!

(
t2

2

)4

+ . . .

= et
2/2,

which converges, and it’s easy to check that it satisfies the original initial value prob-
lem:

x′(t) =
(
et

2/2
)′

= tet
2/2 = x(t)t,

and x(0) = 1.

Of course, we could have solved the equation through separation of variables:

x′ = xt ⇒
∫
dx

x
=

∫
t dt ⇒ ln(x) = t2/2 + c.

Then x(0) = 1 implies c = 0. Exponentiate:

ln(x) = t2/2 ⇒ x = et
2/2.

Fixed points. Consider the operator on functions, u→ T (u) given by

T (u)(t) := x0 +

∫ t

s=0

f(u(s)) ds
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In the case we just considered, with x0 = (1, 0) and f(x1, x2) = (x1x2, 1), the method
of successive iterations produced the function u(t) = (et

2/2, t). This function u is a
fixed point for the operator T :

T (u(t)) =

(
1
0

)
+

∫ t

s=0

f(u(s)) ds

=

(
1
0

)
+

∫ t

s=0

f(es
2/2, s) ds

=

(
1
0

)
+

∫ t

s=0

(
ses

2/2

1

)
ds

=

(
1
0

)
+

(
es

2/2

s

)∣∣∣∣t
s=0

=

(
1
0

)
+

(
et

2/2 − 1
t

)

=

(
et

2/2

t

)
= u(t).

Next step. We have seen that the method of successive approximations amounts to
iterating a operator on a space of functions and converging to a fixed point for that
operator. Our next step is to consider this situation a little more generally. Let X be
a space in which convergence makes sense, and consider a mapping T : X → X. We
would like to know conditions under which iterates of a point x0 ∈ X under T will
converge to a point x̃ ∈ X that is fixed under T , i.e., such that T (x̃) = x̃.



Week 6, Friday: Existence and uniqueness for non-linear sys-
tems

the contraction mapping principle

Let (V, ‖ ‖) be a normed vector space over F = R or C. Recall this means that for
all v, w ∈ V and α ∈ F ,

1. ‖v‖ ≥ 0 with equality if and only if v = 0;

2. ‖αv‖ = |α|‖v‖;

3. ‖v + w‖ ≤ ‖v‖+ ‖w‖.

If every Cauchy sequence in V converges (in V ), then we say V is complete, and in
that case (V, ‖ ‖) is called a Banach space. We have already used the fact that Rn

and Cn are Banach spaces, for example, when considering the convergence of eAt.
We will soon need to consider a Banach space whose elements consist of potential
solutions to systems of differential equations.

Definition. Let (V, ‖ ‖) be a Banach space, and let X ⊆ V . Let T : X → X.

1. A point u ∈ X is a fixed point for T if T (u) = u.

2. The function T is a contraction mapping if there is a constant c ∈ [0, 1) ⊂ R such
that

‖T (u)− T (v)‖ ≤ c‖u− v‖

for all u, v ∈ X.

Theorem. Let (V, ‖ ‖) be a Banach space, and let X ⊆ V be a closed subset of V
(hence, it contains all of its limit points). Suppose that T : X → X is a contraction
mapping and fix a constant c ∈ [0, 1) ⊂ R so that

‖T (u)− T (v)‖ ≤ c‖u− v‖
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for all u, v ∈ X. Then T has a unique fixed point ũ ∈ X. Let u0 ∈ X and consider
the sequence of iterates

u0, T (u0), T 2(u0), T 3(u0), . . .

(For example, T 3(u0) = T (T (T (u0))).) We have, for all m ≥ 0,

‖ũ− Tm(u0)‖ ≤ cm

1− c
‖T (u0)− u0‖.

In particular, the sequence of iterates converges to the fixed point, ũ.

Proof. We first show uniqueness. Suppose that T (u) = u and T (v) = v. We have

‖u− v‖ = ‖T (u)− T (v)‖ ≤ c‖u− v‖,

which implies
(1− c)‖u− v‖ ≤ 0.

Since 1− c ≥ 0, it follows that ‖u− v‖ = 0, and hence, u = v.

Now take u0 ∈ X, and define uk+1 := T (uk) for k ≥ 0. Thus, uk = T k(u0) for
all k ≥ 0. For all pairs of natural numbers m ≤ n,

‖un − um‖ = ‖T (un−1)− T (um−1)‖

≤ c‖un−1 − um−1‖

= c‖T (un−2)− T (um−2)‖

≤ c2‖un−2 − um−2‖
...

≤ cm‖un−m − u0‖

= cm‖(u1 − u0) + (u2 − u1) + (u3 − u2) · · ·+ (un−m − un−m−1)‖

≤ cm (‖u1 − u0‖+ ‖u2 − u1‖+ ‖u3 − u2‖+ · · ·+ ‖un−m − un−m−1‖)

≤ cm
(
‖u1 − u0‖+ c‖u1 − u0‖+ c2‖u1 − u0‖+ · · ·+ cn−m−1‖u1 − u0‖

)
= cm‖u1 − u0‖

(
1 + c+ c2 + · · ·+ cn−m−1

)
= cm

1− cn−m

1− c
‖u1 − u0‖

≤ cm

1− c
‖u1 − u0‖.
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Given any ε > 0, we then see that by choosing N sufficiently large, it follows
that if m,n ≥ N , then ‖un − um‖ < ε. So the sequence of iterates, (uk)k≥0 is
Cauchy. Since V is a Banach space, the sequence converges to some ũ, and since X
is closed, ũ ∈ X. Since T is a contraction mapping, it’s continuous (exercise), and
therefore commutes with limits:

lim
k→∞

T (uk) = T ( lim
k→∞

uk) = T (ũ).

On the other hand, by definition of the uk, we have

lim
k→∞

T (uk) = lim
k→∞

uk+1 = lim
k→∞

uk = ũ.

This shows T (ũ) = ũ, i.e., ũ is the unique fixed point of T .

Finally, in our calculation above, we saw that for all m ≤ n,

‖un − um‖ = ‖T n(u0)− Tm(u0)‖ ≤ cm

1− c
‖u1 − u0‖ ≤

cm

1− c
‖T (u0)− u0‖.

Since the norm function and T are continuous, they both commute with limits. There-
fore, taking the limit as n→∞ on both sides of the above inequality yields

‖ũ− Tm(u0)‖ ≤ cm

1− c
‖T (u0)− u0‖.

Method of successive approximations. We are interested in applying the con-
traction mapping principle to the operator

T (u) = x0 +

∫ t

s=0

f(u(s)) ds,

discussed in the previous lecture. So we need to find the appropriate Banach space
and find conditions under which T is a contraction mapping.

Definition. If I ⊂ R is a closed bounded interval, let C(I) denote the R-vector space
of continuous functions on I → Rn (where n is fixed). For each u ∈ C(I), define

‖u‖ := sup
t∈I
|u(t)| = max

t∈I
|u(t)|.

(The last equality is due to the fact that the continuous image of a compact set is
compact—a generalization of the extreme value theorem of one-variable calculus.)
Geometrically, ‖u‖ is the maximum distance from the origin reached by u(t).

Proposition. (C(I), ‖ ‖) is a Banach space.
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Proof. Math 321.

Thus, the method of successive approximations is an operator

T : C(I)→ C(I)

on the Banach space of continuous functions on I. Under what conditions is it a
contraction mapping? We have

|(Tu)(t)− (Tv)(t)| =
∣∣∣∣(x0 +

∫ t

s=0

f(u(s)) ds

)
−
(
x0 +

∫ t

s=0

f(v(s)) ds

)∣∣∣∣
=

∣∣∣∣∫ t

s=0

f(u(s))− f(v(s)) ds

∣∣∣∣
≤
∫ t

s=0

|f(u(s))− f(v(s))| ds

≤ t max
s∈[0,t]

{|f(u(s))− f(v(s))|}.

From this, we can see two things that will help to control the size of |T (u) − T (v)|:
first, restrict to a small enough region around x0 so that f does not vary much on
that region, and second, make the interval in which t varies small. We address the
first problem below by considering the derivative of f .



Week 7, Monday: Existence and uniqueness for non-linear
systems

fundamental existence and uniqueness theorem

Our goal is to apply the contraction mapping principle to the operator

T : C(I)→ C(I)

u 7→ x0 +

∫ t

s=0

f(u(s)) ds

in order to prove the fundamental existence and uniqueness theorem for ordinary
differential equations.

Derivative review. Let E ⊆ Rn be an open set. Recall from vector calculus that
the derivative of a function f : E → Rn at a point p ∈ E is a linear function

Dfp : Rn → Rn

approximating f near p:
f(p+ h) ≈ f(p) +Dfp(h)

for small h. Its corresponding matrix is the Jacobian matrix for f at p, whose j-th
column is the j-th partial of f (measuring how f is changing in the j-th coordinate
direction):

∂f

∂xj
(p) =



∂f1
∂xj

(p)

∂f2
∂xj

(p)

...

∂fn
∂xj

(p)

 .

We say f : E → Rn is continuously differentiable if it is differentiable at all points
in E and the mapping

E → L(Rn)

108
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p 7→ Dfp

is continuous.

Explanation: First, L(Rn) denotes the vector space of linear functions from Rn to
itself. Second, to talk about continuity we define a norm on L(Rn): for L ∈ L(Rn),
let

‖L‖ = max
|x|≤1
|L(x)|.

This is the same as ‖A‖ if A is the matrix representing L. In that case, since L(x) =
Ax, the inequality |Ax| ≤ ‖A‖|x| can be written as

‖L(x)‖ ≤ ‖L‖ |x|.

A theorem from calculus says that f is continuously differentiable if and only if all
of its partials ∂fi/∂xj exist and are continuous. (Also, it turns out that continuity of
the partials guarantees that f is differentiable.)

Notation. For an open subset E ⊂ Rn, we denote the R-vector space of continuously
differentiable functions on E by C1(E).

Lipschitz condition. We now introduce a condition on vector fields that will allow
the application of the contraction mapping principle to T .

Definition. Let E ⊆ Rn be an open subset. Then a function f : E → Rn is Lipschitz
if there exists a constant K such that

|f(x)− f(y)| ≤ K|x− y|

for all x, y ∈ E. On the other hand, f is locally Lipschitz on E if for each x0 ∈ E,
there exists ε > 0 and a constant Kx0 such that

|f(x)− f(y)| ≤ Kx0|x− y|

for all
x, y ∈ Nε(x0) := {x ∈ Rn : |x− x0| < ε} .

Proposition. If f ∈ C1(E), then f is locally Lipschitz.

Proof. Let x0 ∈ E. Since E is open it contains an open ball about x0, i.e., there
exists η > 0 such that Nη(x0) ⊂ E. Define ε := η/2 and consider the closed ball

B := Bε(x0) := Nε(x0) := {x ∈ Rn : |x− x0| ≤ ε} .
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Let
Kx0 := max

x∈B
‖Dfx‖.

The constant Kx0 exists since we’re assuming Df is continuous (f ∈ C1(E)). Thus,
x→ Dfx → ‖Dfx‖, being the composition of continuous functions, is also continuous.

Since B is convex, given x, y ∈ B, the line segment joining x to y is contained
in B. Hence, it is OK to stick these points into f . Parametrize the line segment
by φ(s) = x+ s(y − x) for s ∈ [0, 1] and consider the composition

F := f ◦ φ : : [0, 1]→ Rn

s 7→ f(x+ s(y − x)),

a curve in Rn. By the chain rule,

DFs = Dfφ(s) ◦Dφs.

Since F is a curve in Rn, its Jacobian matrix at s is a single column vector—the
tangent or velocity vector F ′(s)—and

DFs(t) = tF ′(s),

a linear function of t (for fixed s). Similarly φs is a curve in Rn, so its Jacobian matrix
is its velocity at time s. It’s easy to compute: since φ(s) = x+ s(y − x), its velocity
is constant. At any time s, we have φ′(s) = y − x. Thus,

Dφs(t) = t(y − x).

By the chain rule,
tF ′(s) = DFs(t) = Dfφ(s)(t(y − x)).

Setting t = 1, we get
F ′(s) = Df(x+s(y−x))(y − x) ∈ Rn.

Since F (0) = f(x) and F (1) = f(y),

|f(y)− f(x)| = |F (1)− F (0)|

=

∣∣∣∣∫ 1

s=0

F ′(s) ds

∣∣∣∣
≤
∫ 1

s=0

|F ′(s)| ds

=

∫ 1

s=0

|Df(x+s(y−x))(y − x)| ds
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≤
∫ 1

s=0

‖Df(x+ s(y − x))‖ |y − x| ds

≤ Kx0

∫ 1

s=0

|y − x| ds

= Kx0|y − x|.

We’ve shown that f is locally Lipschitz.

Theorem. (The fundamental existence and uniqueness theorem for non-
linear systems.) Let E be an open subset of Rn containing x0, and let f ∈ C1(E).
Then there exists a > 0 such that the initial value problem

x′ = f(x)

x(0) = x0

has a unique solution x(t) on [−a, a].

Proof. Since f ∈ C1(E), there exists an ε > 0 such that Nε(x0) ⊆ E, the open ball
of radius ε centered at x0, and there exists a constant Kx0 such that

|f(x)− f(y)| ≤ Kx0|x− y|

for all x, y in Nε(x0). By replacing ε by ε/2, we may assume

|f(x)− f(y)| ≤ Kx0|x− y|

for all x, y in
B := Nε(x0) := {x ∈ Rn : |x− x0| ≤ ε} ⊂ E.

(The point here is to get the Lipschitz condition to hold on a closed bounded ball
rather then on the open ball, Nε(x0), in preparation for an application of the extreme
value theorem, below.)

Let I = [−a, a] where a > 0 is a constant to be determined later, and define

X := {u ∈ C(I) : ‖u− x0‖ ≤ ε} ,

considering x0 ∈ C(I) as the constant function t 7→ x0 for all t ∈ I. This means that
for u ∈ X, we have

max
t∈I
|u(t)− x0| ≤ ε.

In particular, u(t) ∈ B ⊂ E for all t ∈ I. Note that B is a subset of E ⊆ Rn and X
is a subset of the function space C(I) of continuous functions I → Rn. If u ∈ X,
then u(t) ∈ B for all t ∈ I.
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Our goal is to show that a can be taken small enough so that (i) T (u) ∈ X for
all u ∈ X, i.e., so that T : X → X, and so that (ii) T : X → X is a contraction
mapping.

For (i), since B is closed and bounded, we can define

M = max
x∈B
|f(x)|.

Suppose that 0 < a < ε
M

. Then for u ∈ X and t ∈ I,

|T (u)(t)− x0| =
∣∣∣∣(x0 +

∫ t

s=0

f(u(s)) ds

)
− x0

∣∣∣∣
=

∣∣∣∣∫ t

s=0

f(u(s)) ds

∣∣∣∣
≤
∣∣∣∣∫ t

s=0

|f(u(s))| ds
∣∣∣∣ .

If s is in the interval between 0 and t and u ∈ X, it follows that u(s) ∈ B, and
hence, |f(u(s))| ≤M . Therefore, continuing our calculation,

|T (u)(t)− x0| =
∣∣∣∣∫ t

s=0

|f(u(s))| ds
∣∣∣∣

=

∣∣∣∣∫ t

s=0

M ds

∣∣∣∣
= |t|M

≤ aM

<
ε

M
M

< ε.

Hence,

‖T (u)− x0‖ := max
t∈I
|T (u)(t)− x0| < ε.

Therefore T (u) ∈ X. In sum: if 0 < a < ε/M , then T : X → X.
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We now work on (ii): we can take a small enough so that T : X → X is a contraction
mapping. Let u, v ∈ X. Then, using the Lipschitz property,

|T (u)− T (v)| =
∣∣∣∣∫ t

s=0

f(u(s))− f(v(s)) ds

∣∣∣∣
≤
∣∣∣∣∫ t

s=0

|f(u(s))− f(v(s))| ds
∣∣∣∣

≤ Kx0

∣∣∣∣∫ t

s=0

|u(s)− v(s)| ds
∣∣∣∣

≤ Kx0

∣∣∣∣∫ t

s=0

max
c∈I
|u(c)− v(c)| ds

∣∣∣∣
= Kx0

∣∣∣∣∫ t

s=0

‖u− v‖ ds
∣∣∣∣

= Kx0 |t| ‖u− v‖

≤ aKx0‖u− v‖.

To ensure T is a contraction mapping, take a = 1
2Kx0

(so that aKx0 = 1
2
< 1).

In total, we have now shown there exists and interval I = [−a, a], a closed ball X ⊂
C(I) centered at the constant function x0, such that T : X → X and T is a contraction
mapping. It therefore has a unique fixed point x ∈ X. So x = T (x), i.e.,

x(t) = T (x)(t) := x0 +

∫ t

s=0

f(x(s)) ds.

By the fundamental theorem of calculus and the fact that x(0) = x0, it follows that x
is a solution to the initial value problem

x′ = f(x)

x(0) = x0

on I. For uniqueness, recall that any solution x on I will be a fixed point for T :

T ′(x)(t) =

(
x0 +

∫ t

s=0

f(x(s)) ds

)′
= f(x(t)) = x′(t).

so T (x) and x differ by a constant. However T (x(0)) = x0 = x(0), so that constant
is 0. Since every solution is a fixed point of T and contraction mappings have unique
fixed points, we are done.



Week 7, Wednesday: Linearization

Definition. An equilibrium point for a system of differential equations in Rn

x′ = f(x)

is a point p ∈ Rn such that f(p) = 0.

The reason for the terminology is that if p is an equilibrium point then a solution
(the solution if f is continuously differentiable) with initial condition x(0) = p is the
constant solution x(t) = p.

We hope to get a qualitative sense of the solutions to our system near an equilibrium
point p by replacing the system with a linear approximation:

x′ = Jfp

where Jfp is the Jacobian matrix for f at p.

Consider the system of equations

x′ = (x2 − 1)y

y′ = (1− y2)

(
x+

3

10
y

)
.

So in this case f(x, y) = ((x2 − 1)y, (1− y2)
(
x+ 3

10
y
)
).

Problem 1. Find all equilibrium points for the system and plot them in the plane.

Problem 2. Compute the Jacobian matrix Jf(x,y) for our f at an arbitrary point (x, y).

Problem 3 For each equilibrium point p, analyze the linear system(
x′

y′

)
= Jfp

(
x
y

)
114
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by looking at the eigenvalues of Jfp. Do you get a saddle? A stable focus or node?
An unstable focus or node? A center? (See the last page for a quick guide.)

Problem 4. What does the vector field look like along the line x = 1 and along
the line x = −1? What can you say about the special behavior of solutions with an
initial condition (±1, y0)? Interpret this geometrically.

Problem 5. What does the vector field look like along the line y = 1 and along the
line y = −1? What can you say about the special behavior of solutions with an initial
condition (x0,±1)? Interpret this geometrically.
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equilibrium points for linear systems in R2

Let A ∈ M2(R). Let τ be the trace of A, and let δ be the determinant of A. The
characteristic polynomial for A will factor as

p(x) = (λ1 − x)(λ2 − x)

= x2 − (λ1 + λ2)x+ λ1λ2

= x2 − τx+ δ

where λ1 and λ2 are the eigenvalues of A. Setting p(x) = 0 and solving gives an
alternate description of the eigenvalues:

x =
τ ±
√
τ 2 − 4δ

2
.

If δ = 0, then at least one of the eigenvalues is zero, and we have a degenerate
system.

δ = 0 degenerate.

δ < 0 real eigenvalues, opposite signs ⇒ saddle.

δ > 0, τ 2 − 4δ ≥ 0 real eigenvectors, same signs ⇒ node.

τ < 0 ⇒ stable node
τ > 0 ⇒ unstable node.

δ > 0, τ 2 − 4δ < 0 nonreal eigenvectors ⇒ swirling vector field.

τ < 0 ⇒ stable focus
τ > 0 ⇒ unstable focus
τ = 0 ⇒ center.

τ

δ

unstable
focus

stable
focus

stable
node

unstable
node

saddle

degeneratedegenerate degenerate

ce
n
te

r



Week 7, Friday: Dependence on parameters, maximal inter-
val. Begin stable manifold theorem

Dependence on parameters, maximal interval

Here we mention a couple of fairly immediate refinements of the fundamental existence
and uniqueness theorem. Consider our usual initial value problem:

x′ = f(x) (21.1)

x(0) = x0

where f : E → Rn is continuously differentiable on the open subset E ⊂ Rn and
x0 ∈ E. The first refinement (dependence on parameters) says that if we deform f
smoothly and move x0 slightly, then the solution deforms smoothly. The second
refinement says that the solution x(t) to our initial value problem exists on a uniquely
determined maximal interval about t = 0.

Theorem. (Dependence on parameters.) Let E be an open subset of Rn+m contain-
ing the point (x0, µ0) where x0 ∈ Rn and µ0 ∈ Rm, and assume f ∈ C1(E). Then
there is a neighborhood1 N(x0) ⊆ Rn of x0, a neighborhood N(µ0) ⊆ Rm of µ0, and
an a > 0 such that for all y ∈ N(x0) and for all µ ∈ N(µ0), the initial value problem

x′ = f(x, µ)

x(0) = y

has a unique solution x = x(t, y, µ) with x ∈ C1(R) where R := [−a, a] × N(x0) ×
N(µ0).

Example. Let A ∈ Mn(R) and x0 ∈ Rn. Then the solution to the system x′ = Ax
with x(0) = x0 is x(t, x0, A) = eAtx0, which is a smooth function of t, A, and x0. In
this case, m =

(
n
2

)
, and we identify a point µ ∈ Rm with a matrix Aµ whose entries,

read from left-to-right, top-to-bottom form µ. Thus, f(x, µ) = Aµx.

1A neighborhood of a point is any set that contains an open set containing the point.
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Theorem. Consider our initial value problem with f ∈ C1(E) and initial condi-
tion x0. There is an interval J = (α, β) with α, β ∈ R ∪ {±∞} and a solution x(t)
defined for t ∈ J such that if y(t) is any other solution defined on an interval I,
then I ⊆ J and x(t) = y(t) on I. Further, if β ∈ R, i.e., if β 6= ∞, then given
any compact (closed and bounded) subset K ⊂ E, then there exists t ∈ J such
that x(t) /∈ K.

The interval J is called the maximal interval of existence and is clearly uniquely
determined.



Week 8, Monday: Stable manifold theorem

Last lecture, we started investigating the effect of replacing f(x) with Dfx0 in (1)
at an equilibrium point x0, i.e., at a point where f(x0) = 0. The first theorem we’ll
consider which makes this comparison precise is the stable manifold theorem. To state
the theorem we need to formally introduce the flow of a vector field, and the idea of
a manifold.

Flow. For each x0 ∈ E, let I(x0) be the maximal interval of existence of the solution
to (1) with initial condition x0. Then let

Ω := {(t, x0) ∈ R× E : t ∈ I(x0)} .

For each (t, x0) ∈ Ω, let φ(t, x0) be the solution to (1) with initial condition x0

evaluated at time t ∈ I(x0). This defines a mapping

φ : Ω→ Rn

called the flow of the vector field f : E → Rn. For each t ∈ I(x0) we define

φt(x0) := φ(t, x0).

Our text (Section 2.5) establishes the following properties for the flow:

1. φ0(x0) = x0

2. φs(φt(x0)) = φs+t(x0)

3. φ−t(φt(x0)) = x0

wherever these expressions make sense.

Example. Consider the case of a linear system, in which f(x) = Ax for some
A ∈Mn(R). Here E = Rn, and for each x0 ∈ Rn, the solution is

φt(x0) = x(t) = eAtx0,
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and the maximal interval of existence is I(x0) = R. So Ω = Rn+1, and the above
properties for the flow are easily verified in this special case. For instance,

φs(φt(x0)) = eAs(eAtx0) = eA(s+t)x0 = φs+t(x0).

Manifolds. Roughly speaking, a manifold is a object that can be constructed from
a collection of open subsets of Rn and a set of instructions for gluing these open
sets together. A quintessential example is given by an ordinary world atlas. Each
page consists of a flattened out map of a piece of the earth. There will be pairs of
pages that overlap along boundaries representing the same regions. The drawings
of features of the earth on these pages implicitly provide instructions for gluing the
pages together. If the pages where made of moldable putty, then it would be possible
to piece these pages together to make a shape. One possible result, among others
would be a sphere, and so we say the sphere is a manifold. It is two-dimensional
since we glue together open subsets of R2 to make it. We now move on to the formal
definition.

Definition. A metric space is a set X with a distance function or metric,

d : X ×X → R

that is positive definite, symmetric, and obeys the triangle inequality:

1. d(x, y) ≥ 0 with d(x, y) = 0 if and only if x = y

2. d(x, y) = d(y, x)

3. d(x, y) ≤ d(x, z) + d(z, y).

Every metric space (X, d) is a topological space where a subset U ⊆ X is open if for
each u ∈ U , there exists r > 0 such that the open ball of radius r centered at u is
contained in U :

B(u, r) := {x ∈ X : d(u, x) < r} ⊆ U.

Definition. Two subsets A,B of a metric space X are homeomorphic if there exists a
continuous bijection f : A→ B with continuous inverse. The mapping f is then called
a homeomorphism from A to B. (More generally, two topological spaces U, V are
homeomorphic if there is a continuous bijection f : U → V with continuous inverse.)
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Definition. An n-dimensional differentiable manifold is a connected metric space1 M
and an open covering {Uα} (so for each α in some index set, Uα is an open subset
of M and M = ∪αUα) such that:

1. for all α, there is a homeomorphism

hα : Uα → Vα

where Vα is an open subset of Rn, and

2. if Uα ∩ Uβ 6= ∅, the mapping

hβ ◦ h−1
α : hα(Uα ∩ Uβ)→ hβ(Uα ∩ Uβ)

is continuously differentiable.

Each pair (hα, Uα) is called a chart, and the collection of charts is called an atlas.
The mapping hβ ∩ h−1

α are transition functions.

To go back to the rough description we made earlier: each chart (hα, Uα) represents
a page hα(Uα) in the atlas. The set Uα is a piece of the manifold (earth), and the
mapping hα is the rendering of that piece of the earth onto a flat piece of paper.
On overlaps Uα ∩ Uβ on the manifold the corresponding pages of the atlas have
overlaps hα(Uα∩Uβ) and hβ(Uα∩Uβ). We can glue these together with the transition
function hβ ◦ h−1

α .

Theorem. (Stable manifold theorem.) Let E ⊆ Rn and let f ∈ C1(E). Suppose
that f(0) = 0 and that Df0 has k eigenvalues with negative real part and n − k
eigenvalues with positive real part. Then there exists a k-dimensional differentiable
manifold S tangent to the stable subspace Es of the linearized system x′ = Df0(x)
at 0 and there exists an (n− k)-dimensional differentiable manifold U tangent to the
unstable space Eu of the linearized system. Further

lim
t→∞

φt(x0) = 0

for any x0 ∈ S and
lim
t→−∞

φ(x0) = 0

for any x0 ∈ U .

1More generally, M could be a second-countable Hausdorff toplogical space.
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stable manifold theorem

Review of stable, unstable, and center subspaces. Consider the linear sys-
tem x′ = Ax for some A ∈ Mn(R). Suppose that the generalized eigenvectors
and their corresponding eigenvalues for A are uj + ivj and λj = aj + ibj, respec-
tively, for j = 1, . . . , n. Thus, putting these vectors as columns in a matrix P ,
we have P−1AP = J where J is the Jordan form of A. The generalized eigenvec-
tors uj + ivj for which bj 6= 0 come in conjugate pairs since A is a real matrix. Then
the stable, unstable, and center subspaces for the system are, respectively,

Es := Span {uj, vj : aj < 0}
Eu := Span {uj, vj : aj > 0}
Ec := Span {uj, vj : aj = 0} .

Recall that up to a change of coordinates, the solution to the system is eJt and
that for a Jordan block corresponding to λj = aj + ibj, we can factor out eλjt =
eajt(cos(bjt) + i sin(bjt)), leaving a matrix that is polynomial in t:

eJ`(λj)t = eλjt



1 t t2

2!
. . . . . . t`−1

(`−1)!

0 1 t . . . . . . t`−2

(`−2)!

0 0 1 . . . . . . t`−3

(`−3)!

. . .
...

...
...

0 . . . . . . 0 1 t

0 . . . . . . . . . 0 1


.

Thus, it is the signs of the aj that determine the long-term behavior of the system.

Theorem. (Stable manifold theorem.) Let E ⊆ Rn and let f ∈ C1(E). Suppose
that f(0) = 0 and that Df0 has k eigenvalues with negative real part and n − k
eigenvalues with positive real part. Let φ be the flow for the system x′ = f(x).
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Then there exists a k-dimensional differentiable manifold S tangent to the stable
subspace Es of the linearized system x′ = Df0(x) at 0 and there exists an (n −
k)-dimensional differentiable manifold U tangent to the unstable space Eu of the
linearized system. Further

lim
t→∞

φt(p) = 0

for any p ∈ S and

lim
t→−∞

φ(p) = 0

for any p ∈ U .

Remark. To apply this theorem to an arbitrary equilibrium point x0, make the
change of coordinates x 7→ x − x0, find the stable and unstable manifolds at the
origin, and translate back x 7→ x+ x0.

Example. The system

x′ = −x− y2

y′ = y + x2

has an equilibrium point at the origin. The Jacobian for f(x, y) = (−x− y2, y + x2)
is

Jf(x, y) =

(
−1 −2y
2x 1

)
.

Therefore,

Jf(0, 0) =

(
−1 0
0 1

)
and the linearized system is

x′ = −x
y′ = y.

(The linearized system in this case is easy to read off of the original system in this case
since the equilibrium point is the origin and f has components that are polynomials
since f is it’s own Taylor expansion at the origin.)

The main thing that concerns us, though, is that the eigenvalues for Df(0,0) are ±1.
The eigenspace for −1 is spanned by (1, 0), i.e., the x-axis, and the eigenspace for 1
is spanned by (0, 1), the y-axis. So a stable manifold for our original system should
be tangent to the x-axis and an unstable manifold should be tangent to the y-axis at
the origin. Here is a picture of the flow of the vector field f :
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From the picture, we can see that the vector field is not tangent to the stable and un-
stable spaces for the linearized system at the origin everywhere. The stable manifold
theorem is a statement about what is happening locally, very close to the equilibrium
point. Below, we zoom in on the origin:

Sketch of proof of the stable manifold theorem. The proof of the stable manifold the-
orem, like the proof of the fundamental existence and uniqueness theorem can be
done by the method of successive approximations.

We start with some “pre-processing”: As mentioned above, if the equilibrium point x0

is not the origin, first replace x by x−x0. Suppose that has been done. Second, write

x′ = f(x) = Jf(0)x+ (f(x)− Jf(0)x) .

Defining F (x) := f(x)− Jf(0)x, our system becomes

.

Third, choose an n× n real matrix P such that

P−1Jf(0)P =

(
A 0
0 B

)
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where A has k eigenvalues with negative real parts and B has n− k eigenvalues with
positive real parts. Finally, make the change of variables y = P−1x. Then

x′ = Jf(0)x+ F (x) ⇒ Py′ = Jf(0)Py + F (Py)

⇒ y′ = P−1Jf(0)Py + P−1F (Py).

Define G(y) = P−1F (Py) to get the system

y′ =

(
A 0
0 B

)
y +G(y). (23.1)

Each step we’ve made is reversible. So solving this system is equivalent to solving
the original system.

We now find stable and unstable manifolds through the method of successive approx-
imations. Define

U(t) :=

(
eAt 0
0 0

)
and V (t) :=

(
0 0
0 eBt

)
so that

e(
A 0
0 B )t = U(t) + V (t).

For t ∈ R and a ∈ Rn, define an operator T on Rn-valued functions u with domain
in a region near the origin in R× Rn by

(Tu)(t, a) := U(t)a+

∫ t

s=0

U(t− s)G(u(s, a)) ds−
∫ ∞
s=t

V (t− s)G(u(s, a)) ds. (23.2)

Now use the method of successive approximations starting with

u(0)(t, a) = 0 ∈ Rn.

Calculations like those we did for the proof of the fundamental existence and unique-
ness theorem show the approximations u(m)(t, a) converge to a fixed point u(t) of T
for t in a small interval about the origin and for a restricted to a sufficiently small
neighborhood of the origin in Rn.

A stable manifold for equation (23.1) is given as the set of points

(a1, . . . , ak, uk+1(0, a1, . . . , ak, 0, . . . , 0), . . . , un(0, a1, . . . , ak, 0, . . . , 0))

as (a1, . . . , ak) varies in a neighborhood of the origin in Rk. We get a stable manifold
for the original system by applying P to these points, since y = P−1x, then translating
back x 7→ x+ x0, if the original equilibrium point was not the origin.
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To find an unstable manifold, replace t by −t to get the system

y′ = −
(
A 0
0 B

)
y −G(y),

since (y(−t))′ = −y′(−t). However, now note that −A has k positive eigenvalues
and −B has n− k negative eigenvalues, so to apply the above argument, we need to
swap coordinates φ : y 7→ (yk+1, . . . , yn, y1, . . . , yk) to get the system

(φ(y))′ =

(
−B 0
0 −A

)
φ(y)−G(φ(y)),

apply the method of successive approximations, then swap back by applying φ−1 to
the points in the resulting manifold.

As evidence for the reasonableness of the method presented in the sketch above sup-
pose that y(t) is a solution to equation (23.2) with (i) initial condition y(0) close
to 0 and such that (ii) y(t) is bounded as t → ∞. We will show that y must satisfy
equation (23.2) (and thus will be a fixed point of the iterative process). Let

M :=

(
A 0
0 B

)
so that the system becomes

y′ = My +G(y).

Then

y′ = My +G(y) ⇒ e−Mty′ = e−MtMy + e−MtG(y)

⇒ e−Mty′ = Me−Mty + e−MtG(y)

⇒ e−Mty′ −Me−Mty = e−MtG(y)

⇒ (e−Mty)′ = e−MtG(y)

⇒
∫ t

s=0

(e−Msy(s))′ ds =

∫ t

s=0

e−MsG(y(s) ds

⇒ e−Mty(t)− y(0) =

∫ t

s=0

e−MsG(y(s)) ds

⇒ y(t)− eMty(0) =

∫ t

s=0

eM(t−s)G(y(s)) ds
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⇒ y(t) = eMty(0) +

∫ t

s=0

eM(t−s)G(y(s)) ds

⇒ y(t) = (U(t) + V (t))y(0)

+

∫ t

s=0

(U(t− s) + V (t− s))G(y(s)) ds

⇒ y(t) = (U(t) + V (t))y(0) +

∫ t

s=0

U(t− s)G(y(s)) ds

+

∫ ∞
s=0

V (t− s))G(y(s)) ds−
∫ ∞
s=t

V (t− s))G(y(s)) ds

To see that the integrals here are all bounded, first note that since y is bounded as
t → ∞ (by assumption) and G is continuous, we have that G(y(s)) is bounded as
s→∞. Next note that since the real part of the eigenvalues of B are positive, V (t−s)
is bounded as s→∞ (recall that V (t− s) =

(
0 0
0 eB(t−s)

)
). Continuing,

y(t) = (U(t) + V (t))y(0) +

∫ t

s=0

U(t− s)G(y(s)) ds

+

∫ ∞
s=0

V (t− s))G(y(s)) ds−
∫ ∞
s=t

V (t− s))G(y(s)) ds

⇒ y(t) = U(t)y(0) + V (t)

(
y(0) +

∫ ∞
s=0

V (−s)G(y(s)) ds

)
(?)

+

∫ t

s=0

U(t− s)G(y(s)) ds−
∫ ∞
s=t

V (t− s))G(y(s)) ds

Consider the above equation. On the left, we have y(t), which is bounded as t→∞.
One the right, considering the eigenvalues of A and B we see that first, third, and
fourth summands are bounded as t→∞. This implies that

V (t)

(
y(0) +

∫ ∞
s=0

V (−s)G(y(s)) ds

)
is bounded as t→∞. But recall that

V (t) =

(
0 0
0 eBt

)
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where B has n− k eigenvalues, each with positive real parts. Since

y(0) +

∫ ∞
s=0

V (−s)G(y(s)) ds

is bounded (in fact, constant), this means that

V (t)

(
y(0) +

∫ ∞
s=0

V (−s)G(y(s)) ds

)
= 0

(Note that the above equation is a product of two matrices. So we cannot conclude
that either of the factors is the zero matrix.) From equation (?), above, it follows
that

y(t) = U(t)y(0) +

∫ t

s=0

U(t− s)G(y(s)) ds−
∫ ∞
s=t

V (t− s))G(y(s)) ds,

as we wanted to show.
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global stable and unstable manifolds

Let E be an open subset of Rn containing the origin, 0, and let f : E → Rn be
continuously differentiable. Consider the system of differential equations x′ = f(x).
Suppose 0 is an equilibrium point and that Df0 has k eigenvalues with negative real
part and n− k eigenvalues with positive real part. By the stable manifold theorem,
in a neighborhood of 0 there exists a k-dimensional stable manifold S and an n− k-
dimensional unstable manifold U . The manifold S is tangent at 0 to the stable
space Es for the linearized system x′ = Df0(x). Similarly, U is tangent at 0 to the
unstable space Eu for the linearized system. Further, if φt(x) is the flow for the
system, then

lim
t→∞

φt(p) = 0

for all p ∈ S and

lim
t→−∞

φt(p) = 0

for all p ∈ U .

Define the global stable and unstable manifolds at the equilibrium point 0 by

W s(0) := ∪t≤0φt(S)

and

W u(0) := ∪t≥0φt(U),

respectively. Here, for any subset X ⊂ E,

φt(X) := {φt(x) : x ∈ X} .

It turns out that these manifolds (i) do not depend on our choice of local stable and
unstable manifolds S and U , (ii) are invariant under φt, and (iii) for all p ∈ W s(0),

lim
t→∞

φt(p) = 0

129



130 CHAPTER 24. WEEK 8, FRIDAY

and for all p ∈ W u(0),

lim
t→−∞

φt(p) = 0.

Remark. There is also version of the stable manifold theorem that applies to equi-
librium points where the linearization has eigenvalues with real part equal to zero. It
states that if the linearization has k eigenvalues with positive real part, j eigenvalues
with negative real part, and m = n − k − j eigenvalues with zero real part, then
there are manifolds W s, W u, and W c tangent to stable, unstable, and central spaces,
respectively, of the linearization having dimensions k, j, and m, respectively. These
spaces are invariant under the flow of the system. See our text, Section 2.7.

Hartman-Grobman theorem

We again consider a system x′ = f(x) as above with equilibrium point x0 = 0. (For
an arbitrary equilibrium point x0, just replace x by x − x0.) We again assume the
linearized system has no eigenvalues with real part equal to 0. These equilibrium
points are called hyperbolic equilibrium points. Roughly, the Hartman-Grobman the-
orem says that in a neighborhood of x0, the system x′ = f(x) and the linearized
system x′ = Dfx0(x) are qualitatively the same, in a way to be made precise below.

Theorem. (Hartman-Grobman) Let E be an open subset of Rn containing the origin,
and let f : E → Rn be continuously differentiable with Jacobian matrix Jf . Suppose
that 0 is a hyperbolic equilibrium point of the system x′ = f(x). Then there exist
open neighborhoods U and V of the origin and a homeomorphism (i.e., a continuous
bijection with continuous inverse)

H : U → V

with H(0) = 0 having the following property: for all x0 ∈ U , there is an interval I ⊆ R
containing the origin such that for all t ∈ I,

H(φt(x0)) = eJf(0)tH(x0).

The theorem says H maps trajectories of the system x′ = f(x) to trajectories of the
linearized system x′ = Jf(0)x in a neighborhood of the origin. (Nonzero equilibria are
handled by translating to the origin, as usual.) The proof of the theorem is outlined in
Section 2.8 of our text and goes, again, by the method of successive approximations.
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Example. Consider the system

x′ = −x
y′ = y + x2.

The origin is a hyperbolic equilibrium point, and the linearized system there is

x′ = −x
y′ = y.

Our text shows how to apply the method of successive approximations to find the
homeomorphism

H(x, y) =

(
x, y +

1

3
x2

)
.

The effect of the mapping is illustrated below with the stable manifolds in blue and
the unstable manifolds in red:

H

The nonlinear system can be solved using the methods we covered during week five
of the semester, and the solution with initial condition (x0, y0) is

x(t) = x0e
−t

y(t) =

(
y0 +

1

3
x2

0

)
et − 1

3
x2

0e
−2t.
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To find the stable manifold, we find the points (x0, y0) such that the solution with
that initial points converges to (0, 0) as t→∞. For the unstable manifold, we do the
same but with t→ −∞. We find

W s(0, 0) =

{(
x,−1

3
x2

)
: x ∈ R

}
W u(0, 0) = {(0, y) : y ∈ R} .

The solution to the linearized system is

x(t) = x0e
−t

y(t) = y0e
t

with stable and unstable spaces

Es = {(x, 0) : x ∈ R}
Eu = {(0, y) : y ∈ R} .

Applying H to the solution of the nonlinear system gives

H(φt(x, y)) = H

(
xe−t,

(
y +

1

3
x2

)
et − 1

3
x2e−2t

)

=

(
xe−t,

(
y +

1

3
x2

)
et
)

=

(
e−t 0
0 et

)(
xe−t(

y + 1
3
x2
)
et

)
= eJf(0,0)tH(x, y).

The stable and unstable manifolds for the nonlinear system are mapped by H to the
stable and unstable spaces, respectively, for the linear system:

H

(
x,−1

3
x2

)
= (x, 0),

and
H(0, y) = (0, y).



Week 9, Monday: Stability and Liapunov functions

Liapunov functions and stability

Definition. An equilibrium point x0 for a system x′ = f(x) is stable if for each open
neighborhood U of x0, there exists another open neighborhood W of x0 such that
if p ∈ W , then φ(t, p) ∈ U for all t ≥ 0. Otherwise, x0 is unstable. We say x0 is
asymptotically stable if it has an open neighborhood W such that

lim
t→∞

φt(p) = x0

for all p ∈ W .

Facts.

1. Surprisingly, an equilibrium point can be both unstable and asymptotically stable!
We’ll see an example in the homework.

2. Suppose x0 is a hyperbolic equilibrium point, i.e., it’s linearized system has no
eigenvalues with real part equal to 0. To analyze the stability of x0, we use
Hartman-Grobman to replace the system x′ = f(x) with its linearization x′ =
Dfx0(x) at x0. If all eigenvalues of Dfx0 have negative real part, then x0 is stable
and asymptotically stable, and the approach of a trajectory to x0 is exponential
in time. Otherwise, some eigenvalue has positive real part, and x0 is unstable.

3. In any case, it turns out that if an equilibrium point x0 is stable, then no eigenvalue
of Dfx0 has positive real part (even in the non-hyperbolic case).

Liapunov functions. Let x0 be an equilibrium point. Suppose there is a way to
assign a smoothly changing “temperature” to each point in E such that: (i) the
temperature at x0 is 0, (ii) the temperature at every other point is positive. Could
we determine stability only knowing the temperatures along trajectories? This is the
idea behind the notion of a Liapunov function. (Below, we label the temperature
function by V .)
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Given V : E → R and p ∈ E, we define

V̇ (p) =
d

dt
V (φt(p))

∣∣∣∣
t=0

.

Thus V̇ (p) tells us how fast the temperature is changing along the solution trajectory
as it passes through p.

Theorem. Let f ∈ C1(E) and f(x0) = 0. Let V : E → R also be C1 (continuously
differentiable). Suppose that V (p) ≥ 0 and V (p) = 0 if and only if p = x0. Then:

1. If V̇ is negative semidefinite (V̇ (p) ≤ 0 for all p ∈ E \ {x0}) then x0 is stable.

2. If V̇ is negative definite (V̇ (p) < 0 for all p ∈ E \ {x0}) then x0 is asymptotically
stable.

3. If V̇ is positive definite (V̇ (p) > 0 for all p ∈ E \ {x0}), then x0 is unstable.

Definition. A function satisfying the hypotheses of the previous theorem is called a
Liapunov function.

Happily, thanks to the chain rule, the conditions on V̇ in the theorem can be verified
without solving the system:

Proposition. With V as above,

V̇ (p) = ∇V (p) · f(p).

Proof. Let ψ(t) := φt(p). Apply the chain rule:

J(V ◦ ψ)(0) = JV (ψ(0))Jψ(0)

= JV (p)Jψ(0)

=
(

∂V
∂x1

(p) . . . ∂V
∂xn

(p)
) ψ′1(0)

...
ψ′n(0)


= ∇V (p) · ψ′(0).

Now, ψ is the solution to the system x′ = f(x) with initial condition p. There-
fore, ψ′(t) = f(ψ(t)), and ψ′(0) = f(ψ(0)) = f(p). The result follows.
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Example. Consider the system

x′ = −y3

y′ = x3.

The origin is a non-hyperbolic equilibrium point and

V (x, y) = x4 + y4

is a Liapunov function for that point. (Clearly, V is smooth and V (x, y) ≥ 0 with
equality only at the origin.) For any trajectory (x, y) = (x(t), y(t)), we have

V̇ (x, y) = 4x3x′ + 4y3y′ = 4x3(−y3) + 4y3(x3) = 0.

Hence, the origin is stable. In fact, our calculation shows that V (φt(p)) is a constant
as a function of t. In other words, trajectories (solutions) sit on level sets for V , as
seen in the following:

Proof of theorem. We may assume x0 = 0 ∈ Rn is the equilibrium point.

(1) Suppose that V̇ (p) ≤ 0 for all p ∈ E \ {x0}. Choose ε > 0 such that the open
ball Bε(x0) of radius ε centered at x0 is contained in E. Let

Bε(x0) := {x ∈ Rn : |x− x0| ≤ ε} .

Replacing ε by ε/2, if necessary, we may assume Bε(x0) ⊂ E. Let

α := min
|x|=ε

V (x),

the minimum of V on the boundary of Bε(x0). The function V achieves its minimum
on the boundary since V is continuous and the boundary is compact (closed and
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bounded). Since the minimum is achieved at some point on the boundary and V is
strictly greater than 0 away from the origin, we have α > 0.

Define
W := {x ∈ Bε(x0) : V (x) < α} .

We think of W as the set of points in Bε whose “temperature” is less that α, the
minimum temperature on the boundary of Bε. Then W is an open1 neighborhood
of the origin, and no solution starting at a point in W can leave W since V is
nonincreasing on solution curves. Thus x0 is stable.

(2) Suppose now that V̇ (p) < 0 for all p ∈ E \ {x0}. As in the proof for part (1), we
choose ε > 0 so that Bε(x0) ⊂ E. We let

α := min
|x|=ε

V (x),

and take
W := {x ∈ Bε(x0) : V (x) < α} .

Since V̇ (p) < 0 for all p ∈ E \ {x0}, we saw in the proof of part (1) that solution
trajectories starting inW never leaveW . We would like to show that limt→∞ φt(p) = 0
for all p ∈ W . Pick any sequence t1 < t2 < . . . such that tn → ∞, and consider the
sequence

{φ(tn, p)} .
By part (1), this sequence never leavesW , and hence it is contained in the closureW ⊆
Bε(x0), which is compact. So by the Bolzano-Weierstrass theorem, there exists a
convergent subsequence. This means that there is a subsequence tnk

such that

lim
k→∞

φ(tnk
, p) = q

for some q ∈ W . For ease of writing, replace our original sequence with the subse-
quence {tnk

}k. We then have
lim
n→∞

φ(tn, p) = q.

We would like to show that q = x0 = 0, and we will do this by contradiction. Suppose
that q 6= 0. Then V (q) > 0. Also since V is strictly decreasing along trajectories, we
have

V (q) > V (φ(1, q)).

Since limn→∞ φ(tn, p) = q, by continuity of solutions with respect to both time and
initial conditions, and by continuity of V , there exists an integer N large enough so

1The set W is open since W = V −1((−∞, α)), and by definition of continuity, the inverse image
of an open subset under a continuous function is continuous.
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that φ(tN , p) is close enough to q so that V (φ(1, φ(tN , p))) is close enough to V (φ(1, q))
so that

V (φ(1 + tN , p)) = V (φ(1, φ(tN , p)) < V (q).

Since tn → ∞, we can find M such that tM > 1 + tN . Then, since V is strictly
decreasing along trajectories, we have

V (q) > V (φ(1 + tN , p)) > V (φ(tM , p))

This is a problem: since V stricty decreases along trajectories and V is continuous,
we have that the sequence {V (φ(tn, p)} is strictly decreasing and converges to V (q).
So in contradiction to the inequalities displayed above,

V (φ(tM , p) > V (q).

We have shown that q = 0 and that there is a sequence {tn} such that limn→∞ φ(tn, p) =
q = 0. We now need to show limt→∞ φ(t, p) = x0 = 0. If not, there exists an η > 0
such that for all n, there exists sn > n such that

|φ(sn, p)| ≥ η > 0. (25.1)

We may assume that the sequence sn is increasing. However, by Bolzano-Weierstrass,
there again exists a subsequence {snk

} of {sn} such that φ(snk
, p) converges, and as

we have seen, it must converge to 0. But that’s impossible in light of (25.1).

(3) Finally, now suppose that V̇ (p) > 0 for all p ∈ E \ {x0}. Choose ε > 0 such
that Bε(0) ⊂ E. We’ll show that given any point p ∈ E, we have that φt(p)
leaves Bε(0) at some point, i.e., there exists t ≥ 0 such that |φt(p)| > ε. Hence, x0 is
unstable.

Given p ∈ E \ {0}, since V is strictly increasing on trajectories,

V (φt(p)) > V (φ0(p)) = V (p) > 0

for all t > 0. Thus, φt(p) is bounded away from 0. Say |φt(p)| ≥ η > 0 for all t ≥ 0.
If η ≥ ε, then we are done since |p| = |φ0(p)| ≥ η > ε, which says p is already out
of Bε(x0). Otherwise, define

m := min
y:η≤|y|≤ε

V̇ (y),

which exists since V̇ is continuous and y is restricted to a compact set. In fact, for
that same reason, m = V̇ (q) for some point in the set over which we are minimizing.
Therefore, m > 0. Supposing for contradiction that φt(p) stays inside Bε(x0) for
all t ≥ 0, we have V̇ (φt(p)) ≥ m for all t ≥ 0. Hence,

V (φt(p))− V (p) = V (φt(p))− V (φ0(p)) =

∫ t

s=0

V̇ (φs(p)) ds ≥ mt→∞
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as t → ∞. But since V is continuous, it achieves a maximum on Bε(x0)—a contra-
diction. �

Example. Consider the system

x′ = −2y + yz

y′ = x− xz
z′ = xy.

The Jacobian at the origin is

J(0) =

 0 −2 0
1 0 0
0 0 0

 .

The characteristic polynomial is

det

 −x −2 0
1 −x 0
0 0 −x

 = −x3 − 2x = −x(x2 + 2).

So the eigenvalues are 0,±
√

2i. So the origin is a nonhyperbolic equilibrium point.
To determine stability, we look for a suitable Liapunov function. We guess a function
of the form

V = ax2 + by2 + cz2

with positive constants a, b, c. We have

V̇ = 2axx′ + 2byy′ + 2czz′

= 2ax(−2y + yz) + 2by(x− xz) + 2cz(xy)

= 2(−2a+ b)xy + 2(a− b+ c)xyz.

Take a = c = 1 and b = 2, and we get V = x2 + 2y2 + z2 with V̇ = 0. This means
that trajectories stay on the ellipsoids that are level sets of V .
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liapunov functions

Theorem. Let f ∈ C1(E) and f(x0) = 0. Let V : E → R also be C1 (continuously
differentiable). Suppose that V (p) ≥ 0 and V (p) = 0 if and only if p = x0. Then:

1. If V̇ is negative semidefinite (V̇ (p) ≤ 0 for all p ∈ E \ {x0}) then x0 is stable.

2. If V̇ is negative definite (V̇ (p) < 0 for all p ∈ E \ {x0}) then x0 is asymptotically
stable.

3. If V̇ is positive definite (V̇ (p) > 0 for all p ∈ E \ {x0}), then x0 is unstable.

Proof. As before, we may assume x0 = (0, 0) is the equilibrium point. Part (1) was
proved in the last lecture.

(2) Last time, we were in the midst of proving part (2). Using the notation from
last time, so far, we have shown that for every sequence t1 < t2 < · · · such that
limn→∞ tn =∞, there exists a subsequence {tnk

} such that limk→∞ φ(tnk
, p) = 0 ∈ Rn.

We now need to show limt→∞ φ(t, p) = x0 = 0. If not, there exists an η > 0 such that
for all n, there exists tn > n such that

|φ(tn, p)| ≥ η > 0. (26.1)

We may assume that the sequence tn is increasing. However, by Bolzano-Weierstrass,
there again exists a subsequence {tnk

} of {tn} such that φ(tnk
, p) converges, and as

we have seen, it must converge to 0. But that’s impossible in light of (26.1).

(3) Finally, now suppose that V̇ (p) > 0 for all p ∈ E \ {x0}. Choose ε > 0 such
that Bε(0) ⊂ E. We’ll show that given any point p ∈ Bε(0) \ {0}, we have that φt(p)
leaves Bε(0) at some point, i.e., there exists t ≥ 0 such that |φt(p)| ≥ ε.

Given p ∈ Bε(0) \ {0}, since V is strictly increasing on trajectories,

V (φt(p)) > V (φ0(p)) = V (p) > 0
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for all t > 0. Thus, φt(p) is bounded away from 0. Say |φt(p)| ≥ η > 0 for all t ≥ 0.
Since η ≤ |φ0(p)| = |p| < ε, it follows that η < ε. Define

m := min
y:η≤|y|≤ε

V̇ (y),

which exists since V̇ is continuous and y is restricted to a compact set. In fact, for
that same reason, m = V (q) for some point in the set over which we are minimized.
Therefore, m > 0. Supposing for contradiction that φt(p) stays inside Bε(x0) for
all t ≥ 0, we have V̇ (φt(p) ≥ m for all t ≥ 0. Hence,

V (φt(p))− V (p) = V (φt(p))− V (φ0(p)) =

∫ t

s=0

V̇ (φs(p)) ds ≥ mt→∞

as t → ∞. But since V is continuous, it achieves a maximum on Bε(x0)—a contra-
diction. �

Example. Consider the system

x′ = −2y + yz

y′ = x− xz
z′ = xy.

and the Jacobian at the origin is

J(0) =

 0 −2 0
1 0 0
0 0 0

 .

The characteristic polynomial is

det

 −x −2 0
1 −x 0
0 0 −x

 = −x3 − 2x = −x(x2 + 2).

So the eigenvalues are 0,±
√

2i. So the origin is a nonhyperbolic equilibrium point.
To determine stability, we look for a suitable Liapunov function. We guess a function
of the form

V = ax2 + by2 + cz2

with positive constants a, b, c. We have

V̇ = 2axx′ + 2byy′ + 2czz′
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= 2ax(−2y + yz) + 2by(x− xz) + 2cz(xy)

= 2(−2a+ b)xy + (a− b+ c)xyz.

Take a = c = 1 and b = 2, and we get V = x2 + 2y2 + z2 with V̇ = 0. This means
that trajectories stay on the ellipsoids that are level sets of V .
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Equilibrium points for planar systems

Consider a general planar system

x′ = P (x, y)

y′ = Q(x, y).

By translating, we can assume that any equilibrium point we are interested in sits at
the origin.

Here are some types of equilibrium points.

1. The origin is a center if there exists δ > 0 such that every trajectory with initial
condition in Bδ \ {(0, 0)} is a closed curve containing (0, 0) in its interior.

2. Let r(t, r0, θ0) and θ(t, r0, θ0) denote the solution to our system in polar coordinates
and with initial conditions r(0) = r0 and θ(0) = θ0. The origin is a stable focus
if there exists δ > 0 such that 0 < r0 < δ and θ0 ∈ R imply r(t, r0, θ0) → (0, 0)
and |θ(t, r0, θ0)| → ∞ as t → ∞. It is an unstable focus if the same holds
as t→ −∞.

3. The origin is a stable node if there exists δ > 0 such that for 0 < r0 < δ
and θ0 ∈ R, we have r(t, r0, θ0) → (0, 0) as t → ∞ and limt→∞ θ(t, r0, θ0) exists.
In other words, the trajectories approach the origin with a well-defined tangent.
It’s an unstable node if the same holds with t → −∞. A node is called proper
if every ray through the origin is tangent to some trajectory.

4. The origin is a topological saddle if it is locally homeomorphic to a saddle for a
linear system.

5. The origin is a center-focus if there exists a sequence of closed solution curves Γn
with Γn+1 in the interior of Γn such that Γk → (0, 0) as k → ∞ and such that
every solution with initial condition between Γn and Γn+1 spirals toward either Γn
or Γn+1 as t→ ±∞.
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Summary of results for hyperbolic equilibria.

Let x0 = (0, 0) be a hyperbolic equilibrium point and assume that P and Q are
continuously differentiable. Then

1. The point x0 is a topological saddle if and only if the linearized system has a saddle
at the origin. (This follows from Hartman-Grobman.)

2. If the linearized system has a center, then x0 is either a center, a focus, or a center-
focus. The case of a center-focus cannot occur if P and Q are analytic at x0, i.e., if
they can be expressed as power series that converge in some disc about the origin.

3. If x0 is a node then the linearized system it’s a node or a focus for the nonlinear
system. Similarly, if it’s a focus for the linearized system, then its a node or focus
for the nonlinear system. If f has continous second partials, then if x0 is a node
for the linearized system, it is also a node for the nonlinear system, and similarly
for foci. (See our text, Example 5, Section 2.10.)

Example. Here is an example of a center-focus:

x′ = −y + x
√
x2 + y2 sin

(
1√

x2 + y2

)

y′ = x+ y
√
x2 + y2 sin

(
1√

x2 + y2

)
.

for x2 + y2 6= 0, and with f(0, 0) = (0, 0) where f is the right-hand side of the above.
(In particular, it turns out that f is not analytic at the origin.) Changing to polar
coordinates gives the system

r′ = r2 sin

(
1

r

)
θ′ = 1

for r > 0, and r′ = 0 for r = 0. So θ = t + θ0, and if sin(1/r) = 0, i.e., if r = 1
nπ

for
any n ∈ Z>0, we have r′ = 0. So the circles of radius 1

nπ
are trajectories. If

nπ <
1

r
< (n+ 1)π,

i.e., if
1

(n+ 1)π
< r <

1

nπ
,
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then r′ < 0 if n is odd and r′ > 0 if n is even. Which means the trajectories will
either spin inwards or outwards towards one of the circular trajectories. A partial
picture appears below:

Nonhyperbolic equilibria. Please set our text, Section 2.11 for a description of
possible behaviors for a nonhyperbolic equilibrium point for a two-dimensional sys-
tem. In particular, please learn the meaning of the following terms: sector, hyperbolic
sector, parabolic sector, elliptic sector, saddle-node.

Note the comment on p. 150: if the linearized system is nonzero, the only types
of equilibrium points that can occur beside those already mentioned for analytic
systems are saddle-nodes, critical points with elliptic domains, and cusps. The book
gives examples of each of these:

saddle-node (two hyperbolic sectors, one parabolic sector):

x′ = x2

y′ = y

critical point with elliptic domain (one elliptic sector, one hyperbolic sector, two
parabolic sectors, four separatrices):

x′ = y

y′ = −x3 + 4xy

cusp (two hyperbolic sectors, two separatrices):

x′ = y

y′ = x2



Week 10, Wednesday: Global theory for nonlinear systems:
index theory

global theory for nonlinear systems: index theory

A Jordan curve C is the injective continuous image γ : S1 → R2 of a circle into
the plane. Equivalently, it is the continuous image of an interval γ : [0, 1] → R2

that is injective on [0, 1) and such that γ(0) = γ(1). The Jordan curve theorem
(first conjectured by Bolzano) states that a Jordon curve divides the plane into two
connected components. We will impose the further condition that γ be piecewise
smooth (continuous derivatives except at a finite number of points).

Let f(x, y) = (P (x, y), Q(x, y)) be a smooth vector field in the plane, and let C
be a Jordan curve. A critical point for f is a point (x0, y0) where f(x0, y0) = 0.
(Thus, a critical point would be an equilibrium point for the corresponding system of
differential equations.)

Definition. The index If (C) of C relative to f is

If (C) :=
∆θ

2π

where ∆θ is the change in angle of f(x, y) as (x, y) travels around C counterclockwise.

Exercises.

1. For each of the following vector fields, (i) draw the flow near the origin and draw
a circle C containing the origin; (ii) pick some points on C, and draw each point
as a vector (with tail at the origin) on a separate picture of R2; (iii) compute the
index:

(a) f(x, y) = (−1,−1) (b) f(x, y) = (−x,−y)

(c) f(x, y) = (−y, x) (d) f(x, y) = (−x, y).

2. How does the index change in (a)–(d) if f is replaced by −f?
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3. How would the index change if C were replaced by an ellipse?

Calculation of the index. Let γ(t) = (x(t), y(t)) be a parametrization of C. By
translating, if necessary, we may assume the origin is in the interior of C. Consider
the composition of mappings

[0, 1)
γ−→ R2 f−→ R2.

We are interested in the change in the angle of f ◦γ as t goes from 0 to 1. Write f ◦γ
in polar coordinates:

P (x, y) = r cos(θ) Q(x, y) = r sin(θ)

where x, y, r, θ are functions of t. Then

P ′ = r′ cos(θ)− rθ′ sin(θ)

Q′ = r′ sin(θ) + rθ′ cos(θ),

and it’s easy to check that

r2θ′ = PQ′ −QP ′

where r2 = P 2 +Q2. Therefore, the change in angle is

∆θ =

∫ 1

t=0

PQ′ −QP ′

P 2 +Q2
dt =

∫ 1

t=0

(P,Q)·
(

Q′

P 2 +Q2
,− P ′

P 2 +Q2

)
dt =

∮
C

PdQ−QdP
P 2 +Q2

.

So the index is

If (C) =
∆θ

2π
=

1

2π

∮
C

PdQ−QdP
P 2 +Q2

.

To convert to the language of differential forms, let

ω :=
x dy − y dx
x2 + y2

be the “flow form” for the circular vector field
(
− y
x2+y2

, x
x2+y2

)
on R2. Then the index

is calculated by integrating the pullback of ω along f over C:

If (C) =
1

2π

∮
γ

f ∗ω.
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Example. Let f(x, y) = (−y, x), and let C be the unit circle centered at the origin
parametrized by γ(t) = (cos(t), sin(t)) for t ∈ [0, 2π]. Then

f(γ(t)) = (− sin(t), cos(t)).

If (C) =
∆θ

2π
=

1

2π

∮
C

PdQ−QdP
P 2 +Q2

=
1

2π

∫
C

(P,Q) ·
(

Q′

P 2 +Q2
,− P ′

P 2 +Q2

)
dt

=
1

2π

∫ 1

t=0

(− sin(t), cos(t)) ·
(

− sin(t)

(− sin(t))2 + cos(t)2
,− − cos(t)

(− sin(t))2 + cos(t)2

)
dt

=
1

2π

∫ 2π

t=0

dt = 1.

Theorem. If there are no critical points on C or in its interior, then If (C) = 0.

Proof. Step 1. Suppose C = C1 + C2 as shown below:

C1 C2

The curves C1 and C2 share the vertical middle line. In the calculating of the sum
of the indices of f relative to C1 and to C2, the contribution from the middle line
cancels (imaging traveling along both C1 and C2 in the counterclockwise direction).
Thus, If (C) = If (C1) + If (C2).

Step 2. Next, divide C into a sum of lots of tiny closed curves:

So C = C1 + · · ·+ Cn. It suffices to show that If (Ci) = 0 for all i. Some details and
a reference are provided below, but the main idea is that since f 6= ~0 on or inside C,
by taking Ci small enough, the vector field’s angle cannot change much along Ci:
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Let X denote C union its interior. Since X is compact, and the component func-
tions P and Q of the vector field are continuous, it follows that P and Q are uniformly
continuous. That means that given any ε > 0, we can make the widths of the Ci si-
multaneously small enough to that P and Q change by a value less then ε on each Ci.
Also, since X is compact and f is continuous and nonzero in X, the value of |f(x, y)|
attains a nonzero minimum on X. This means that it is possible to take the widths
of the Ci simultaneously small enough so that the angle of f on X varies by only a
small amount (less than 2π is sufficient). Some details appear in our text, Problem 2,
Chapter 3.

The result then follows from Step 1: If (C) =
∑

i If (Ci) =
∑

i 0 = 0.

Corollary. Let C be a Jordan curve. Suppose there are no critical points on C but
that there may be critical points in its interior. Let C ′ a Jordan curve in the interior
of C, and suppose there are no critical points on C ′, and there are no critical points
in the region between C and C ′. Then If (C) = If (C

′).

Proof. Referring to the diagram below, let ∂A and ∂B be the Jordan curves forming
the boundaries of the closed regions labeled A and B. So both ∂A and ∂B are the
boundaries of deformed rectangles. Imagine traveling counterclockwise along these
curve, computing their indices. You should see that

If (∂A+ ∂B) = If (C)− If (C ′).

However, since there are no critical points in A and none in B, using the previous
theorem, we have

If (∂A+ ∂B) = If (∂A) + If (∂B) = 0.

The result follows.
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A

B

C

C ′

Corollary. If C and C ′ are Jordan curves containing the same finite set of critical
points in their interiors, then If (C) = If (C

′).

Proof. Let D be a Jordan curve containing all the critical points and contained in
the interiors of both C and C ′. Then by the previous corollary,

If (C) = If (D) = If (C
′).

Definition. Let p be an isolated critical point of f . Define the index of x relative
to f to be

If (p) := If (C)

where C is any Jordan curve containing p as its only interior critical point. (This is
well-defined from the previous corollary.)

Theorem. Let p1, . . . , pn be the critical points inside C. Then

If (C) =
n∑
i=1

If (pi).

Proof. The proof is similar to that of our first corollary:

C

p1 p2 p3 pn

A

B
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We have

0 = If (∂A+ ∂B) = If (C)−
n∑
i=1

If (pi).



Week 10, Friday: Global theory for nonlinear systems: index
theory

Problem 1. Compute the indices for all the critical points pictured below.
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In the remaining problems, all vector fields should be smooth and with isolated sin-
gularities.

Problem 2. Draw three vector fields on a sphere: one containing a sink, one con-
taining a center, and one containing a saddle. In addition to the prescribed critical
points, your vector field may contain other critical points. Calculate the indices for
all critical points. What is the sum of the indices in each of the three instances?
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Problem 3. Draw four vector fields on a torus, calculating the indices for all critical
points. What is the sum of the indices in each instance?
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Problem 4. Draw a vector field on a two-holed donut, calculating the indices for all
critical points. What is the sum of the indices?

Problem 5. Draw a vector field on an n-holed torus. Calculate the indices of the
critical points, and find the sum of the indices.
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Problem 6. Suppose each of the vector fields in Problem 1 was draped over a sphere
with the origin at the north pole. Complete the vector field to one on the whole
sphere, adding only one more critical point—at the south pole. What would the
critical point at the south pole look like? What would its index be? It the type of
critical point unique?



Week 11, Monday: Global theory for nonlinear systems: index
theory

Our goal now is to formally define the index of a vector field on a surface besides R2.
Let S be a 2-dimensional manifold. So S = ∩iUi where the Ui open sets and with
homeomorphisms

hi : Ui → Vi ⊂ R2

which allow us to think of each Ui as an open subset Vi ⊆ R2 of the plane. On
overlaps Ui ∩ Uj, the change of coordinates mapping hj ◦ h−1

i is differentiable. Recall
that the pair (Ui, hi) is called a chart and the collection of charts is an atlas . Suppose
that S ⊆ Rn. A vector field on S is a C1-mapping f : S → Rn such that f(p) is tangent
to S, so there is a curve γ : (−1, 1)→ S such that γ(0) = p and γ′(0) = f(p).

To calculate the index of a critical point p of f , i.e., at a point where f(p) = 0, we
first pick Ui such that p ∈ Ui, and we use hi to identify f with a vector field on R2

with critical point hi(p). In detail, if q ∈ Ui, we pick a curve γ in S passing through q
at time 0 and such that γ′(0) = f(q). To find the corresponding vector on R2, we use
the composition

(−1, 1)
γ−→ Ui

hi−→ R2.

The vector in R2 at the point q will be (hi ◦ γ)′(0).

The next thing we need to define the index of a critical point of a vector field on S
is an orientation. An orientation is a choice of charts so that the Jacobian of each
change of coordinates has positive determinant wherever defined. In other words, for
all i, j and for all p ∈ Ui∩Uj, we assume det J(hj ◦h−1

i ) > 0. Then, to define the index
of a vector field at a critical point p, first choose a chart (Ui, hi) with p ∈ Ui. Use hi
to translate the vector field f to a vector field hi,∗(f) on Vi = hi(Ui) as described
above. Then define the index If (p) to be the index of hi(p) for the vector field hi,∗(f)
i.e., If (p) := Ihi,∗(f)(hi(p)).

Not all 2-dimensional manifolds are orientable, for instance, a Möbius strip is not
orientable, nor is the projective plane P2 (which contains a Möbius strip).

We now assume that S is compact and oriented. It turns out that in this case, we can
take S to be a g-hold donut embedded in R3. We will take the orientation to be the
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one determined by the outward-pointing normal vector for S: for a chart at a point p,
just take a sufficiently small open piece of the surface containing p, and “flatten is
out”. We take “counterclockwise” to be the direction for which the right-hand rule
gives the outward pointing normal vector:

~n

Theorem (Poincaré-Hopf index theorem). Suppose the critical points of the
vector field f on S are p1, . . . , pk. Then

k∑
i=1

If (S) = 2− 2g.

Proof. We first consider the case g = 0. So S is an ordinary sphere in R3. Draw a
tiny circle C around a regular point q (i.e., non-critical point). Call the side of C
containing q the “inside” of C. We take C tiny enough so that there are no critical
points inside C and f is virtually constant around C:

C

Now for the hard part: imagine cutting out the inside of C, stretching C and the
remaining part of S so that this remaining part (containing all of the critical points
of f) sits in R2 with C as its boundary. If you are careful with how the vector field
morphs under this transformation, you should get the picture:

C
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The vector field now rotates clockwise twice as we go around C. The critical points
are now inside the circle in the picture above, so it looks like the sum of their indices
should be 2. However, if you are careful, you’ll notice that the orientation has reversed
(the normal vectors from the sphere are now pointing into the page). So we should
flip the picture, to get the usual orientation:

C

As we travel around the boundary counter-clockwise, the vector field on the boundary
rotates twice, again counterclockwise. So the index is still 2 (as opposed to −2).

Thus, the sum of the indices is

2 = 2− 2 · 0 = 2− 2g

in the case of S = S2.

Now consider a g-holed donut:

The picture is taken from our text, where p is used instead of g. We will keep using g
to denote the number of holes. The cylinders S1, . . . , Sg are chosen so that they
contain no critical points. Next, contract the boundaries of the Si, morphing the Si
into spheres S ′1, . . . , S

′
g:
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The vector field morphs, too, creating critical points Qi and Q′i for i = 1, . . . , g
on the surface S ′ pictured above, and corresponding critical points Pi and P ′i on the
spheres S ′i. Since the vector field at each Pi is the negative of that on Qi and similarly
for P ′i and Q′i, we have

If (Pi) = If (Qi) and If (P
′
i ) = If (Q

′
i).

Since the S ′i are spheres, from our previous work it follows that

If (Pi) + If (P
′
i ) = 2

for all i. The surface S ′ is a sphere. Therefore,

If (S
′) = 2.

The result follows:

If (S) = If (S
′)−

g∑
i=1

(If (Qi) + If (Q
′
i))

= If (S
′)−

p∑
i=1

(If (Pi) + If (P
′
i ))

= 2− 2g.

Note: The Poincaré-Hopf theorem also holds for non-orientable manifolds. See our
text for a proof (that builds on the above proof).



Week 11, Wednesday: Critical points at infinity, and global
phase portraits

global phase portraits

Consider a planar polynomial system:

x′ = P (x, y) (31.1)

y′ = Q(x, y)

where P and Q are polynomials. Our goal not is to look at critical points of this
system “at infinity”.

Induced flow on the sphere. Imagine our plane as being the z = 1 plane in R3,
which we will denote by Πz, and then project the flow from the plane to the unit
sphere S centered at the origin using a line through the center of the sphere:

This will produce a flow on the sphere that naturally extends to its equator. We
think of the points on the equator as points at infinity at our plane, and our goal is
to examine the critical points there.
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To project (x, y, 1) ∈ Πz to the sphere, we scale it by Z ∈ R

Z(x, y, 1) = (Zx,Zy, Z) =: (X, Y, Z)

to get a point on S. The condition is

(Zx)2 + (Zy)2 + Z2 = 1.

This means

Z =
1√

x2 + y2 + 1
.

Therefore, the corresponding point on the sphere is

(X, Y, Z) =
1√

x2 + y2 + 1
(x, y, 1).

Since

x =
X

Z
and y =

Y

Z
,

we may use (31.1) to get

0 = QP − PQ
= Qx′ − Py′

= Q

(
X

Z

)′
− P

(
Y

Z

)′

= Q

(
X ′Z −XZ ′

Z2

)
− P

(
Y ′Z − Y Z ′

Z2

)
.

Clearing denominators and regrouping, gives

QZX ′ − PZY ′ + (PY −QX)Z ′ = 0

To think about this geometrically, we’ll write this equation as

(QZ,−PZ, PY −QX) · (X ′, Y ′, Z ′) = 0.

The solution curve γ(t) = (X(t), Y (t), Z(t)) has velocity vector

γ′(t) = (X ′(t), Y ′(t), Z ′(t)),

and the above equation says that this curve is perpendicular to the vector

N = (QZ,−PZ, PY −QX).
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In preparation for taking a limit as Z → 0, we consider the functions

P (x, y) = P

(
X

Z
,
Y

Z

)
and Q(x, y) = Q

(
X

Z
,
Y

Z

)
.

As functions of X, Y , and Z, these functions now contain powers of Z as denomina-
tors. To clear these denominators, let d be the maximum of the degrees of P and Q,
and multiply through by Zd to get new polynomials:

P ∗ := ZdP, Q∗ := ZdQ, and N∗ := ZdN = (Q∗Z,−P ∗Z, P ∗Y −Q∗X).

Since we have only scaled N to get N∗, we still have

N∗ · γ′(t) = (Q∗Z,−P ∗Z, P ∗Y −Q∗X) · γ′(t) = 0.

What happens as we approach the equator, i.e., as Z → 0? If P ∗Y − Q∗Z 6→ 0,
then N∗ → (0, 0, a) for some nonzero a. In other words, the vector N∗ gets closer
and closer to pointing straight up. In turn that means that our trajectory gets closer
and closer to running parallel to the equator. So at these points, the induced flow on
the equator is just a flow along the equator (not across the equator). This says that
the place to look for critical points along the equator are the points (X, Y, 0), where

P ∗Y −Q∗X = 0. (31.2)

Analyzing critical points at ∞. Suppose that using equation (31.2), we find a
point (a, b, 0) of interest. Since the point sits on the sphere, at least one of a and b
is nonzero. Say a 6= 0. We now use central projection to project our flow onto the
plane x = 1 in R3, which we denote by Πx. Taking a point (x, y, 1) ∈ Πz, we scale it
to get (

1,
y

x
,

1

x

)
∈ Πx,

which we identify with the point (
y

x
,

1

x

)
∈ R2.

In other words, we are identifing Πx with R2 using these coordinates. Let

u :=
y

x
and v :=

1

x
.
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From (31.1),

x′ =

(
1

v

)′
= − v

′

v2
= P (x, y) = P

(
1

v
,
u

v

)

y′ =
(u
v

)′
=
u′v − uv′

v2
= Q(x, y) = Q

(
1

v
,
u

v

)
.

Projecting our point of interest, (a, b, 0) into the plane x = 1 gives the point(
1,
b

a
, 0

)
.

So in the u, v-plane representing Πx, our job is to analyze the point(
b

a
, 0

)
for the system defined by

− v
′

v2
= P

(
1

v
,
u

v

)
u′v − uv′

v2
= Q

(
1

v
,
u

v

)
.

Example. Consider the saddle

x′ = −x
y′ = y.

So P (x, y) = −x and Q(x, y) = y. To find the interesting points on the equator, we
consider

PY −QX = P

(
X

Z
,
Y

Z

)
Y −Q

(
X

Z
,
Y

Z

)
X

= −X
Z
Y − Y

Z
X = −2

XY

Z
= 0.

Clearing denominators gives
2XY = 0.
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So either X = 0 or Y = 0. The corresponding points on the equator are

(0, 1, 0) and (1, 0, 0).

Let’s look at (1, 0, 0), first. We want to project to the x = 1 plane. The mapping of
interest is

(x, y, 1) 

(
1,
y

x
,

1

x

)
.

Let u = y
x

and v = 1
x

and substitute into our system. The first equation in the system
says

x′ =

(
1

v

)′
= − v

′

v2
= −x = −1

v
.

Therefore,
v′ = v.

Continuing with the second equation in the system:

y′ =
(u
v

)′
=
u′v − uv′

v2

=
u′v − uv

v2
(since v′ = v)

=
u′ − u
v

= y =
u

v
.

Therefore, u′ − u = u, and so
u′ = 2u.

Thus, at the point (1, 0, 0) on the equator, our system looks like the system

u′ = 2u

v′ = v,

which is a source.

Now let’s look at the other interesting point on the equator, (0, 1, 0). The relevant
mapping is

(x, y, 1) 

(
x

y
, 1,

1

y

)
.
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Now let u = x
y

and v = 1
y

and consider the point (1, 0). Plug these into the system:

y′ =

(
1

v

)′
= − v

′

v2
= y =

1

v
.

Thus,
v′ = −v.

Next,

x′ =
(u
v

)′
=
u′v − uv′

v2

=
u′v + uv

v2
(since v′ = −v)

=
u′ + u

v

= −x = −u
v
.

It follows that u′ = −2u. So the system becomes

u′ = −2u

v′ = −v,

a sink.

Global phase portrait. To get the global phase portrait for a planar system, project
the flow onto the upper-hemisphere of the unit sphere, using the process described
above, then position yourself way above the north pole, and look down. For the
saddle we just considered this looks like:
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(If we identify antipodal points on the boundary, we’d get a flow on P2, the projective
plane.)



Week 11, Friday: Critical points at infinity, and global phase
portraits

Recall the notation from last time. We are studying a planar system

x′ = P (x, y) (32.1)

y′ = Q(x, y) (32.2)

where P and Q are polynomials. We embedded our system in the plane z = 1
in R3 and projected the flow along lines centered at the origin onto the unit sphere S
centered at the origin. This flow induced a flow along the equator of the sphere. We
are interested in critical points of this flow along the equator, where z = 0. To find
those we saw that we should . . .

Step 1. Clear denominators in the equation

yP
(x
z
,
y

z

)
− xQ

(x
z
,
y

z

)
= 0,

and then set z = 0.

The result is several points of the form (a, b, 0) on the equator of the sphere.

Step 2. To analyze these, we will project the flow on the sphere to either the
plane x = 1 or the plane y = 1. If a, b are both nonzero, then either plane will
do. If a = 0, then the point in question is (0, 1, 0), and we’d need to project to the
plane y = 1, and if b = 0, the point is (1, 0, 0), and we’d need to project to x = 1.
We’ll consider these cases separately:

Projection to the plane x = 1. We project the point (x, y, 1) along a line through
the origin, i.e., we scale this point, to get a point on the plane x = 1:

(x, y, 1) 

(
1,
y

x
,

1

x

)
.

Let

u :=
y

x
and v :=

1

x
.

168
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We use the coordinates to identify the plane x = 1 with the ordinary plane R2. It
follows that

x =
1

v
and y =

u

v
.

Plug these into system 32.1:

x′ = P (x, y) ⇒
(

1

v

)′
= P

(
1

v
,
u

v

)

⇒ v′ = −v2P

(
1

v
,
u

v

)
Similarly,

y′ = Q(x, y) ⇒
(u
v

)′
= Q

(
1

v
,
u

v

)

⇒ u′v − uv′ = v2Q

(
1

v
,
u

v

)

⇒ u′v = v2Q

(
1

v
,
u

v

)
+ uv′

⇒ u′v = v2Q

(
1

v
,
u

v

)
− uv2P

(
1

v
,
u

v

)

⇒ u′ = v

(
Q

(
1

v
,
u

v

)
− uP

(
1

v
,
u

v

))
.

So the system in the u, v-plane is

u′ = v

(
Q

(
1

v
,
u

v

)
− uP

(
1

v
,
u

v

))
(32.3)

v′ = −v2P

(
1

v
,
u

v

)
.

The problem is that it is likely this system is not defined where v = 0 (at the equator).
To get the induced flow on the equator, we need to clear denominators (thus, scaling
the vector field but not changing its direction at any point). Define

d := max {degP, degQ}
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To clear denominators we scale the vector field in (32.3) by vd−1 to get the system

u′ = vd
(
Q

(
1

v
,
u

v

)
− uP

(
1

v
,
u

v

))

v′ = −vd+1P

(
1

v
,
u

v

)
.

We analyze the point
(
b
a
, 0
)
, since this is the point corresponding to (a, b, 0) in the u, v-

plane.

Important points: The right side of the system (32.3) defines the vector field whose
trajectories we would like to determine. What effect does scaling that vector field
by vd−1 have on the solution trajectories? The vector field gives the tangent vector
for a solution trajectory. So one effect is to scale the speed of the trajectory by
the magnitude |v|d−1. Note that v = 1/x where x comes from the point (x, y, 1) in
the z = 1 plane. As we go “out to infinity” in the z = 1 plane, by taking x larger,
the scaling factor |vd−1| decreases in magnitude. We have chosen d just write so that
the resulting vector field does not blow up on the equator and is also not identically
the zero on the equator.

What about the direction of the trajectory? Since both components of the vector
field are scaled the same amount, there are two choices: (i) if vd−1 > 0, the direction
is the same, and (ii) if vd−1 < 0, the direction is reversed. Next, what significance
does this have for analyzing critical points at the equator? Suppose we are interesting
in a trajectory corresponding containing a point (x, y, 1) in the original z = 1 plane.
If x > 0, then since v = 1/x > 0, it follows that vd−1 > 0, and the direction does not
change. On the other hand, if x < 0, then v = 1/x < 0. If d is odd, then vd−1 > 0,
and if d is even, then vd−1 < 0. So in the latter case, in which d is even, the direction
of the vector field and hence the direction of it solution trajectories is reversed.

Projection to the plane y = 1. By a similar analysis (which will be assigned for
homework), if b 6= 0, we can project to the y = 1 plane and derive an analogous
system of equations:

u′ = vd
(
P

(
u

v
,

1

v

)
− uQ

(
u

v
,

1

v

))

v′ = −vd+1Q

(
u

v
,

1

v

)
.

We are interested in the point
(
a
b
, 0
)

in this plane.
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Global phase portrait A couple of lectures ago, we introduced the global phase
portrait of a planar system. It is the central projection of the flow of the vector field
onto the top half of the sphere. In order to compute it, find and analyze all critical
points of the planar system. Next, find all critical points of the system at infinity.
These come in antipodal pairs: (a, b, 0) and (−a,−b, 0). Without loss of generality,
suppose a > 0. Then we analyze the scaled system, scaling by vd−1 with v = 1/x
in the plane x = 1 at the point

(
b
a
, 0
)
. At the antipodal point, we analyze the same

system but scaled by (−1/x)d−1 and at the point
(−b
−a , 0

)
, i.e., at the same point.

This means the systems at antipodal points are either the same when projected to
the x = 1 plane up to a possible reversal of directions (which happens exactly in the
case d is even.
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Exercises

In the following exercises, we will analyze the critical points, both finite and at∞ for
the system

x′ = x2 + y2 − 1 (32.4)

y′ = 5xy − 5.

Problem 1. Find all critical points of the system, including critical points at ∞.

Problem 2. Analyze each point at ∞ by projecting to the plane x = 1. Draw the
flow in the plane x = 1.

Problem 3. Try to reconcile your results from Problem 2 with the flow of the original
system displayed below:

Try to draw a global phase portrait.



Week 12, Monday: Critical points at infinity, and global phase
portraits

Today we will do more examples of global phase portraits. First we recall the method.

We are studying a planar system

x′ = P (x, y) (33.1)

y′ = Q(x, y) (33.2)

where P and Q are polynomials. Embedded the system in the plane z = 1 in R3 and
project the flow along lines centered at the origin onto the unit sphere S centered at
the origin. This flow induced a flow along the equator of the sphere. We are interested
in critical points of this flow along the equator, where z = 0. The correspond to critical
points at infinity in our original planar system.

Step 1. Let d := max{degP, degQ}. Clear denominators in the equation

yP
(x
z
,
y

z

)
− xQ

(x
z
,
y

z

)
= 0,

and then set z = 0. Note: we clear denominators by multiplying the above expression
through by zd.

The result is several pairs of antipodal points of the form (a, b, 0), (−a,−b, 0) on the
equator of the sphere. The critical points occur among these.

Step 2. Projection to the plane x = 1: If a 6= 0, to analyze the pair of antipodal
points (a, b, 0) and (−a,−b, 0), we may assume a > 0. To determine the behavior of
our spherical system at (a, b, 0), analyze the point

(
b
a
, 0
)

for the system

u′ = vd
(
Q

(
1

v
,
u

v

)
− uP

(
1

v
,
u

v

))

v′ = −vd+1P

(
1

v
,
u

v

)
.
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The behavior at the antipodal point (−a,−b, 0) will be the same except if d is even,
the direction of flow is reversed. (See the previous lecture for an explanation.)

Projection to the plane y = 1: If a 6= 0, then if (a, b, 0) = (0, b, 0) is to be on the
sphere, we must have b = ±1. The behavior at (0, 1, 0) is determined by the behavior
of the point (0, 0) in the system

u′ = vd
(
P

(
u

v
,

1

v

)
− uQ

(
u

v
,

1

v

))

v′ = −vd+1Q

(
u

v
,

1

v

)
.

The behavior at (0,−1, 0) is the same except d is even, the direction of the flow is
reversed.

Global phase portrait. Imagine looking down from a point way up on the z-axis at
the flow we projected to the sphere. Below us, we see a flow on a disc whose boundary
is the equator of the sphere. That’s the global phase portrait: the projection of the
flow on the upper hemisphere of the sphere down to the z = 0 plane. By analyzing
the behavior of our planar system at all of its equilibrium points, including those at
infinity, we show get a good qualitative understanding of the flow of the system from
its global phase portrait.

Exercises from last time. Consider the system

x′ = x2 + y2 − 1

y′ = 5xy − 5.

Problem 1. Find all critical points of the system, including critical points at ∞.

Solution. Find the critical points at infinity:

yP
(x
z
,
y

z

)
− xQ

(x
z
,
y

z

)
= y

((x
z

)2

+
(y
z

)2

− 1

)
− x

(
5
(x
z

)(y
z

)
− 5
)

=
x2y + y3 − yz2 − 5x2y + 5xz2

z2

=
−4x2y + y3 − yz2 + 5xz2

z2
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= 0.

Clear denominators:
−4x2y + y3 − yz2 + 5xz2 = 0.

Set z = 0 to get
−4x2y + y3 = y(−4x2 + y2) = 0.

So the points (x, y, 0) at infinity (along the equator of the sphere) occur where y = 0
or where y = ±2x. So we need to consider the three points

(1, 0, 0),
1√
5

(1,±2, 0),

and their antipodes. In this case, since d = max{degP, degQ} = 2 is even, the
behavior of a pair of antipodes is the same except that the flow is reversed.

Problem 2. Analyze each point at ∞ by projecting to the plane x = 1. Draw the
flow in the plane x = 1.

Solution. We consider the system

u′ = v2

(
5u

v2
− 5− u

(
1

v2
+
u2

v2
− 1

))
= 4u− 5v2 − u3 + uv2

v′ = −v3

(
1

v2
+
u2

v2
− 1

)
= −v − u2v + v3.

We are interested in the critical points (0, 0) and (±2, 0) for the system

u′ = 4u− 5v2 − u3 + uv2

v′ = −v − u2v + v3.

The Jacobian matrix for the right-hand side is

Jf :=

(
4− 3u2 + v2 −10v + 2uv
−2uv −1− u2 + 3v2

)
.

We have

Jf(0, 0) =

(
4 0
0 −1

)
and J(±2, 0) =

(
−8 0
0 −5

)
.

Thus, we get a saddle at (0, 0) and a sinks at (±2, 1).

Here is the flow given by this system in the x = 1 plane:



176 CHAPTER 33. WEEK 12, MONDAY

Problem 3. Try to reconcile your results from Problem 2 with the flow of the original
system displayed below:

Try to draw a global phase portrait.

Solution. Notice in the original system, the almost parallel trajectories heading off
to the northeast as a slope of about 2. If we consider draping the plane over an
underlying sphere, these trajectories will converge to the critical point (1, 2, 0) on
the equator. Similarly, the trajectories heading to the southeast with a slope of
approximately −2 will converge to (1,−2, 0). The trajectories streaming in on the
left from the northwest and southwest are coming from the antipodal points (−1, 2, 0)
and (−1,−2, 0).
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Global phase portrait:

original system x = 1 plane projection

We finish with a couple more examples of global phase portraits.

Example. Consider the system

x′ = x3 − 3xy2

y′ = 3x2y − y3.

The flow is
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To find the interesting points at infinity (along the equator of the sphere) we compute

yP
(x
z
,
y

z

)
− xQ

(x
z
,
y

z

)
= 0,

then clear denominators and set z = 0 to get

0 = −2x3y − 2xy3 = −2xy(x2 + y2).

There are no points on the equator for which x2 + y2 = 0, i.e., for which x = y = 0.
So the solutions occur when on of x and y is 0 and the other is nonzero. That gives
two pair of antipodal points to check: ±(1, 0, 0) and ±(0, 1, 0). To check (1, 0, 0) we
project to the x = 1 plane. The system is

u′ = 2u+ 2u3

v′ = −v + 3u2v

Linearized at the point (0, 0), the system becomes

u′ = 2u

v′ = −v,

which is a saddle. Since d = 3 is odd, the behavior at the antipodal point (−1, 0, 0)
is the same.

For the point (0, 1, 0) we project to the plane y = 1. The system is

u′ = −2u− 2u3

v′ = v − 3u2v

Linearized at the point (0, 0), the system becomes

u′ = −2u
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v′ = v,

another saddle. The antipodal point (0,−1, 0) is similar.

The global phase portrait is:

Example. Consider the system

x′ = −y − xy
y′ = x+ x2.

The flow is

To find the interesting points at infinity (along the equator of the sphere) we compute

yP
(x
z
,
y

z

)
− xQ

(x
z
,
y

z

)
= 0,

then clear denominators and set z = 0 to get

0 = −x3 − xy2 = −x(x2 + y2)
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So we need x = 0. That means we are interested in the points ±(0, 1, 0) on the
equator. Projecting to the plane y = 1, we get the system

u′ = −u− v − u3 − u2v

v′ = −u2v − uv2,

which looks like

Note the line of critical points in the planar flow diagram and how those transform
when that flow is projected onto the sphere and then onto the plane x = 1.



Week 12, Wednesday: Resolution of singularities

blowing up critical points

We would like to describe the process of blowing up a singularity in an algebraic curve.
Consider the nodal cubic curve C

y2 = x3 + x2 = x2(x+ 1)

in the plane. By this we mean the set {(x, y) ∈ R2 : y2 = x3 + x2}:

To blow up the singularity at (0, 0), we embed the curve in the z = 0 plane in R3. Next
consider the “corkscrew” surface B in R3 defined by the equation y = zx. Intersecting
this surface with the plane z = m for each constant m, we get the line y = mx with
slope m:

181
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Define the cylinder over the curve C:

Cyl(C) :=
{

(x, y, z) ∈ R3 : (x, y) ∈ C
}
,

and imagine the intersection Cyl(C) ∩B of this cylinder with the corkscrew surface:

Algebraically, the intersection is the set of solutions (x, y, z) to the equations

y2 = x3 + x2 and y = zx.

Substituting y = zx into the first equation. We see that either the solution is the z-
axis, and the curve on the surface y = zx satisfying z2 = x + 1. The z-axis is called
the exceptional divisor and corresponds to the singularity of C. Project the curve on
the corkscrew surface to the y = 0 plane to get the curve z2 = x+ 1, a parabola:
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This parabola is the blow up of the nodal cubic at the origin. In intersection of
the cylinder over the nodal cubic C with the corkscrew surface, each point of C
besides the origin get raised to a height according to the slope of the line between it
and the origin. The singularity at the origin gets separated into two points on the
corkscrew surface according to its two tangent directions, resolving (desingularizing)
the singularity.

We would like to extend this technique to analyze critical points of planar polynomial
systems of differential equations. For example, consider the system

x′ = xy

y′ = y2 − x4.

The phase portrait is

By inspection, the linearization at the critical point (0, 0) is the system(
x′

y′

)
=

(
0 0
0 0

)(
x
y

)
,
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which clearly doesn’t tell us much about the shape of the flow around the critical
point.

We blow up the critical point using the equation y = zx for the corkscrew surface.
We get y′ = z′x+ zx′, which implies

z′ =
y′ − zx′

x

=
(y2 − x4)− z (xy)

x

=
(z2x2 − x4)− z2x2

x

= −x3.

Notice that by canceling x in the calculation above, we have an equation that is defined
at x = 0. We’ve filled in a hole that way. (Recall that in the blow up process, we
threw away the z-axis in the intersection of the cylinder with the corkscrew surface).
Next,

x′ = xy = x (zx) = x2z

So our system at this point is defined by the vector field f(x, z) = (x2z,−x3):

Again, the linearization of this vector field at the origin is given by the zero matrix.
However, scaling the vector field by 1/x2 at points where x 6= 0 gives the vector
field (z,−x), which is also defined at x = 0: Our final system is

x′ = z

z′ = −x,

which is a center:
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To get back out original vector field, imagine this center wrapped along the corkscrew
surface, before projecting to the x, z-plane. Take the flow we would get on the
corkscrew surface and project that back down to the x, y-plane:



Week 12, Friday: Hamiltonian systems

hamiltonian systems

Let E ⊆ R2n be an open subset, and let H : E → R be a function in C2(E), i.e., a
function whose second partials exist and are continuous. We will write H = H(x, y)
where x, y ∈ Rn. The system

x′ = (x′1, . . . , x
′
n) = Hy :=

∂H

∂y
=

(
∂H

∂y1

, . . . ,
∂H

∂yn

)

y′ = (y′1, . . . , y
′
n) = −Hx := −∂H

∂x
= −

(
∂H

∂x1

, . . . ,
∂H

∂xn

)
,

is called a Hamiltonian system with n degrees of freedom. The function H is called
the Hamiltonian or total energy of the system.

Theorem 1. (Conservation of energy.) For a Hamiltonian system, the total energy H
is constant along trajectories.

Proof. Consider a solution trajectory γ(t) = (x(t), y(t)) in R2n. By the chain rule,

d

dt
H(γ(t)) = ∇H · γ′

=
∂H

∂x
· x′ + ∂H

∂y
· y′

=
∂H

∂x
· ∂H
∂y
− ∂H

∂y
· ∂H
∂x

= 0.

This result means that the solutions lie on level sets for H.
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Example. Let H(x, y) := y sin(x), and consider the Hamiltonian system with one
degree of freedom

x′ = Hy = sin(x)

y′ = −Hx = −y cos(x),

where the x and y subscripts on H denote partial derivatives. We find the critical
points:

x′ = y′ = 0 ⇒ sin(x) = y cos(x) = 0 ⇒ x = nπ and y = 0,

for n ∈ Z. Letting f(x, y) = (sin(x),−y cos(x)), the linearizations at these critical
points are(

x′

y′

)
= Df(nπ, 0)

(
x
y

)
=

(
cos(x) 0
y sin(x) − cos(x)

) ∣∣∣∣
(nπ,0)

(
x
y

)

= (−1)n
(

1 0
0 −1

)(
x
y

)
.

Therefore, the critical points are all topological saddles. Here are pictures of the flow
of the system, a contour plot of H (which shows the level sets), and a graph of H:

Critical points. The critical points of a Hamiltonian system x′ = Hx, y
′ = Hy

occur where where all of the partials of H vanish, i.e., at the critical points for the
function H. These are the points where the graph of H,

graph(H) :=
{

(x, y,H(x, y)) ⊂ R2n+1 : (x, y) ∈ E
}
,

has a “horizontal tangent space”, i.e., where the tangent space is given by setting the
last coordinate equal to zero. (To parametrize the tangent space, imagine the Jacobian
of (x, y) → (x, y,H(x, y)). It is the 2n × 2n identity matrix with an appended row
consisting of the partials of H. The columns of this matrix span the tangent space.)
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At a critical point p, the geometry of H is determined by its second partials (if these
don’t also vanish). For the purpose of determining this geometry, by translation,
we may assume p = 0, the origin, and H(0) = 0. Then the second-order Taylor
polynomial for H will be

Q(x, y) =
1

2

∂2H

∂x2
1

(0)x2
1 +

∂2H

∂x1∂x2

(0)x1x2 + · · ·+ 1

2

∂2H

∂y2
n

(0)y2
n.

By completing squares and making a linear change of coordinates (or appealing to the
spectral theorem for real symmetric matrices), we can transform Q into a function of
the form:

Q̃ = v2
1 + · · ·+ v2

k − v2
k+1 − · · · − v2

r

where the new coordinates are v1, . . . , vr, . . . , v2n. The number of pluses and minuses
turns out to not depend on the choice of change of coordinates and is the crucial
geometric information.

Example. In our earlier example, H(x, y) = y sin(x), the critical points were found
to be (nπ, 0) for n ∈ Z. To compute the second-order Taylor polynomial at each of
these points, we first compute

Hxx = −y sin(x), Hxy = cos(x), Hyy = 0.

So the second-order approximation of H is

T (x, y) = H(nπ, 0) +
1

2
Hxx(nπ, 0)(x− nπ)2 +Hxy(nπ, 0)(x− nπ)y +

1

2
Hyy(nπ, 0)y2

= (−1)n(x− nπ)y.

Letting

u :=
1

2
(y + (x− nπ)) and v :=

1

2
(y − (x− nπ)),

we get
u− v = x− nπ and u+ v = y.

Using this change of coordinates, the Taylor polynomial becomes

T̃ := (−1)n(u− v)(u+ v) = ±(u2 − v2),

and the graph of T̃ is a saddle.

Corollary. Let p ∈ R2n. Suppose there is a solution γ(t) = (x(t), y(t)) such
that γ(0) 6= p but such that γ(t)→ p ∈ R2n as either t→∞ or t→ −∞. Then p is
not a strict minimum or maximum of H.
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Proof. Suppose limt→∞ γ(t) = p. Using Theorem 1, we know that H(γ(t)) is constant.
Therefore, for all t, we have H(γ(0)) = H(γ(t)). Taking the limit at t→∞ and using
the fact that H is continuous, we get

H(γ(0)) = lim
t→∞

H(γ(t)) = H( lim
t→∞

γ(t)) = H(p).

Thus, in any neighborhood of p, there is a path along which H is constant with
value H(p). A similar argument holds in the case γ(t)→ p as t→ −∞.

Theorem 2. Consider a Hamiltonian system with one degree of freedom and total
energy function H(x, y). Suppose that H is analytic (i.e., it can be written as a con-
vergent power series at every point in its domain). Then every nondegenerate critical
point of the system (points where the linearization has two nonzero eigenvalues) is
either a topological saddle or a center. It’s a topological saddle if and only if its a
saddle for H and it’s a center if and only if it’s a strict local minimum or maximum
for H.

Proof. We classified possible nongenerate critical points earlier in the semester. The
above corollary rules out all possibilities except for those listed above. In detail, the
linearization of

x′ = Hy

y′ = −Hx.

is (
x′

y′

)
=

(
Hyx Hyy

−Hxx −Hxy

)
︸ ︷︷ ︸

A

(
x
y

)
.

The trace of A, i.e., the sum of its eigenvalues is τ = tr(A) = 0, and the determinant
of A, i.e., the product of its eigenvalues is δ = det(A) = HxxHyy − H2

yx. Recall our
earlier analysis of linear systems in R2:
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τ

δ

unstable
focus

stable
focus

stable
node

unstable
node

saddle

degeneratedegenerate degenerate

ce
n
te

r
In our case, τ = 0, and we see that if δ(A) < 0, the linearized system is a saddle. By
Hartman-Grobman, the critical point in the original system is then a (topological)
saddle. In the case det(A) > 0, the linearized system is a center. As presented earlier
in the course, that means that the critical point in the original system is either a
center or a focus. However, the corollary to conservation of energy, proved above,
rules out the latter case: by the second derivative test, if det(A) > 0, then H has a
strict local maximum or minimum. So the critical point cannot be a focus.

Newtonian system with one degree of freedom. Consider the equation

x′′ = f(x)

where f ∈ C1(I) for some open interval I. We can think of x′′ as the acceleration of
a particle of mass 1 moving along a line under a force given by f . We can change this
into a planar first-order system with the substitution y = x′:

x′ = y

y′ = f(x).

To see that this is a Hamiltonian system, we need to find a function H(x, y) such
that Hy = y and Hx = −f(x). Integrating the first equation with respect to y gives

H(x, y) =
1

2
y2 + U(x),

for some function U . Taking the partial with respect to x then gives

Hx(x, y) =
d

dx
U(x) = −f(x),
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and hence,

U(x) = −
∫ x

x0

f(s) ds.

We call

T (y) :=
1

2
y2 =

1

2
(x′)

2

the kinetic energy and U(x) the potential energy, and we see the total energy is the
sum of the two:

H(x, y) = T (y) + U(x).

Theorem 3. The critical points of this Newtonian system lie on the x-axis. The
point (x0, 0) is a critical point iff x0 is a critical point of the function U(x), i.e.,
iff U ′(x0) = 0. Suppose that H is analytic. Then,

1. If x0 is a strict local maximum for U , then (x0, 0) is a saddle for the system.

2. If x0 is a strict local minimum for U , then (x0, 0) is a center for the system.

3. If x0 is a horizontal inflection point for U (which means its first nonzero derivative
at x0 of positive order is of an odd order), then (x0, 0) is a cusp (i.e., two hyperbolic
sectors and two separatrices).

Proof. Exercise.

Example. Consider the case of the undamped pendulum:

x′′ = − sin(x).

The corresponding first-order planar system is

x′ = y

y′ = − sin(x).

The potential energy function is

U(x) =

∫ x

0

sin(s) ds = 1− cos(x).

On the next page, we have pictures of both the potential energy and the phase
portrait. Try to see how they reflect Theorem 3. Also note the physical meaning of
the phase portrait. The x-axis shows the motion of the pendulum. The y-coordinate
gives the velocity. The critical points are nπ for n ∈ Z and occur when the pendulum
is balanced vertically or hanging straight down. If the velocity is high enough, the
pendulum is continuously spinning around in a circle.
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Graph of U(x).

Phase portrait.

Graph of H.



Week 13, Monday: Gradient systems

gradient systems

Let E ⊆ Rn be an open subset, and let V : E → R be a function in C2(E). The
system

x′ = −gradV (x) = −∇V (x)

is called a gradient system.

The critical points of a gradient system occur where ∇V (x) = 0, i.e., where are the
partials of V vanish. Hence, they are exactly the critical points of the real-valued
function V . A point that is not a critical point of V is called a regular point of V .

Example. Let
V (x, y) = x2(x− 1)2 + y2.

The corresponding gradient system is

x′ = −Vx = −2x(x− 1)(2x− 1)

y′ = −Vy = −2y.

The critical points are
(0, 0), (1/2, 0), (1, 0).

Here is a picture of the flow with a contour diagram for V superimposed:
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Proposition. At a regular point p of V , any trajectory of the gradient system passing
through p is perpendicular to the level set V (x) = V (p). If q is a strict local minimum
of V , then it is a stable equilibrium point for the gradient system; if, in addition, q is
an isolated equilibrium point, then it is asymptotically stable.

Proof. Suppose that γ(t) is a solution curve of the gradient system and that γ(t0) = p.
We need to show that γ′(t0) is perpendicular to the level set V (x) = V (p). So take
any curve λ(t) sitting in the level set and such that λ(0) = p. Since it sits in the level
set, we have V (λ(t)) = V (p) for all t. It follows that

0 =
d

dt
V (λ(t)) = ∇V (λ(t)) · λ′(t).

Evaluating at t = 0, we get

0 = ∇V (p) · λ′(0) = −γ(t0) · λ′(0),

and hence, λ′(0) is perpendicular to γ′(t0) at p.

Next, suppose that q ∈ E is a strict local minimum of V . In particular, this implies
that all of the partials of V vanish at q, and hence, q is a critical point of the system.
Define Ṽ (x) := V (x)− V (q). Then in an open neighborhood U of q, the function Ṽ

is positive except at q, where it is 0. Thus, Ṽ is a Liapunov function for the system
in a neighborhood of V .

Let γ(t) be a solution trajectory in U . Then,

˙̃
V (γ(t)) =

d

dt
Ṽ (γ(t))

= ∇Ṽ (γ(t)) · γ′(t)

= ∇V (γ(t)) · γ′(t)

= −∇V (γ(t)) · ∇V (γ(t))

≤ 0

with equality if and only if ∇V (γ(t)) = 0. From our earlier discussion of Liapunov
functions, we see that q is a stable equilibrium point. If q is an isolated equilibrium
point, then there exists a neighborhood of q on which ∇V 6= 0 and hence a neigh-

borhood on which
˙̃
V < 0. It follows that q is an asymptotically stable equilibrium

point.
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Cautionary example. Let V : R→ R be given by

V (x) =


∫ |x|

0
e−1/s2 (1 + sin (1/s2)) ds if x 6= 0

0 if x = 0.

Then V is C∞ but ∇V = V ′ has a zero besides the origin in any open neighbor-
hood of the origin. Hence, the origin is a strict local minimum for V but is not an
asymptotically stable equilibrium point for the gradient system corresponding to V .

Duality between planar Hamiltonian and gradient systems. Consider the
following two systems:

x′ = P (x, y) (36.1)

y′ = Q(x, y)

x′ = Q(x, y) (36.2)

y′ = −P (x, y).

By construction, the flows are perpendicular since (P,Q) · (Q,−P ) = 0. The critical
points are the same. So centers of one correspond to nodes for the other, saddles of
one correspond to saddles of the other, and foci correspond to foci. If one is a Hamil-
tonian system, then the other is a gradient system. For instance, suppose (36.1) is
Hamiltonian, then there exists H(x, y) such that Hy = P and Hx = −Q. Then (36.2)
is a gradient system with V (x, y) = H(x, y).

Example. In the previous example, we considered the gradient system with V (x, y) =
x2(x− 1)2 + y2. The corresponding dual system with Hamiltonian H(x, y) = V (x, y)
is

x′ = Hy = 2y

y′ = −Hx = −2x(x− 1)(2x− 1).

The flow of this system appears below:
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Example. Let H(x, y) = V (x, y) = −x2 + xy − y2, and consider the Hamiltonian
system

x′ = P (x, y) = Hy = x− 2y (36.3)

y′ = Q(x, y) = −Hx = 2x− y.

The dual gradient system is

x′ = Q(x, y) = −Vx = 2x− y (36.4)

y′ = −P (x, y) = −Vy = −x+ 2y.

Here are the flow diagrams for systems (36.3) and (36.4), in order and then combined:

Using duality, the following theorem is a consequence of the corresponding theorem
for Hamiltonian systems given in the previous lecture.

Theorem. Let p be a nondegenerate critical point for a gradient system in R2 for
which V is analytic. Then p is either a saddle or a node. If p is a saddle for V then
it’s a saddle for the system, and if p is a strict local minimum (resp. maximum) of V ,
then its a stable (resp. unstable) node for the system.
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