
Math 322 Homework 1

The problems for the first assignment begin on page 3. Before beginning, please
review the following expectations for homework from our Course information sheet:

Solutions. Excellent homework solutions take many forms, but they all have the
following characteristics:

» they use complete sentences, even when formulas or symbols are involved;

» they are written as explanations for other students in the course; in particular,
they fully explain all of their reasoning and do not assume that the reader will
fill in details;

» when graphical reasoning is called for, they include large, carefully drawn and
labeled diagrams;

» they are neatly typeset using the LATEX document preparation system. A guide
to LATEX resources is available on the course homepage.

Recommendations. Here are some strategies for efficiently learning from the homework
assignments:

» start early, don’t wait until the night before it’s due to look at it;

» read all the problems, and identify the ones you can solve right away and the
ones you can’t;

» review your notes and the book carefully; even if you paid attention in lecture,
you probably didn’t get all the details (I recommend doing this before trying to
attempt the problems);

» make an honest attempt to solve all the problems before seeking help;

» talk to others, you can really learn from each other (make sure you don’t just get
the solutions from someone else, and that you are learning and understanding
from this process);

» if needed, please come to my office hours. If the posted hours are not convenient
for you, then please let me know and we will make other arrangements.

Feedback. You will receive timely feedback from me on your homework via Grade-
scope. Most homework problems will be graded on a five-point scale (5 = perfect; 4 =
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minor mistake; 3 = major mistake, right idea; 2 = significant idea; 1 = attempted,
0 = none of the above). The quality of your writing will be taken into account. If
your answer is incorrect, this will be reflected in the score, and there will also be a
comment indicating where things went wrong with your solution. You are strongly
encouraged to engage with this comment, understand your error, and try to come up
with a correct solution. You are welcome to post questions about homework problems
(old and new) to our Moodle forum and talk about them with me in office hours (see
the Help section).
I reserve the right to not accept late homework. If health or family matters might im-
pede the timely completion of your homework, please contact me as early as possible.

Collaboration. You are permitted and encouraged to work with your peers on home-
work problems. It is best practice to cite those with whom you worked, and you must
write up solutions independently. Duplicated solutions will not be accepted
and constitute a violation of the Honor Principle.

Gradescope. Submit your solutions document as a pdf (not an image file) to Grade-
scope, remembering to assign each problem to page(s) in your pdf. Overleaf templates
will be provided for solutions, and I encourage you to use those.

2



Math 322 Homework 1

Solve the following differential equations using the methods from class. You can check
your solutions with a computer, but what you turn in should be done by hand.
For each problem:

(i) give the solution to the equation satisfying the given initial condition y(t0) = I,
and

(ii) specify the largest open interval about t0 in which your solution is valid.

Problem 1. y′ = y3 with y(0) = −2.
Note: Do not leave y defined implicitly; solve for y in an interval about t = 0.

Problem 2. y′ = y sin(t) with y(0) = 1.

Problem 3. y′ =
3y − 2t

t
with y(1) = 4.
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Math 322 Homework 2

Solve each of the following differential equations. Your solution should have the
form y = etc. In other words, I’m looking for an explicit solution. Don’t worry about
the maximal interval in which your solution is defined, but if your initial condition is
given at time t0, make sure your solution is defined about the point t0. Don’t leave
answers with complex numbers, e.g., use sines and cosines rather than eit.

1. y′ =
cos t

y
, y(0) = −4.

2. 2ty y′ = t2 + y2, y(1) = 0.

3. y′ = y2 + 2y + 1, y(0) = −1.

4. 3t2y + y + (t3 + t + 2y)y′ = 0, y(0) = 2.

5. e−ty′ = 3e−ty + 1, y(0) = 0.

6. y′ + y = ty3, y(0) = 1.

7. y′′ − y′ − 12y = 0, y(0) = 1, y′(0) = 2.

8. y′′ + 25y = 0, y(0) = 1, y′(0) = −1.

9. 8y′′ + 2y′ − y = 0, y(−1) = 1, y′(−1) = −2.

10. y′′′ − 6y′′ + 9y′ = 0, y(0) = 0, y′(0) = 1, y′′(0) = −1.
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Math 322 Homework 3

Problem 1. Solve each of the following differential equations. Your solution should
have the form y = etc. In other words, I’m looking for an explicit solution. Don’t
leave answers with complex numbers, e.g., use sines and cosines rather than eit.

1. y′′ − 2y′ + y = 2 cos(t) + 4e3t, y(0) = y′(0) = 1.

2. ty′ + 5y − t5y2 = 0, y(1) = 1.

3. y′′ + 2y′ + 3y = 5 + 3t.

4. y′ = yt/(t2 + 1), y(0) = −3.

5. y′′ − 6yy′ = 0, y(0) = 2, y′(0) = 9.

6. y′′ − 6yy′ = 0, y(0) = 2, y′(0) = 0.

7. D2(D + 1)3(D2 + 2D + 2)2y = 0.

8. y(4) − 16y = 0.

9. y′′ = −2(y′)2, y(0) = 1 = y′(0) = 1.

Problem 2. Let A ∈ Mn(F ), and let ri be the i-th row of A for i = 1 . . . n. Let
` = max{|ri| : 1 ≤ i ≤ n}, the maximum length of a row of A. Prove ‖A‖ ≤ `

√
n.

(Strive to find an elegant solution that does not involve referencing the elements of A
by name. You can do everything using just the notation introduced in the statement
of the problem. Consider |Ax|2 for |x| ≤ 1, and use Cauchy-Schwarz. On the other
hand, an ugly solution is still a solution.)
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Math 322 Homework 4

Problem 1. (Product rule). Let Mm×n(F ) denote the space of m × n matrices
over F = R or C. The derivative of a function

F →Mm×n(F )

t 7→ A(t)

with respect to t is defined entrywise:

(A(t)′)ij = (A(t)ij)
′.

Let A(t) and B(t) be two such functions into Mm×p(F ) and Mp×n, respectively. Use
the ordinary product rule from one-variable calculus to prove the product rule

(A(t)B(t))′ = A(t)′B(t) + A(t)B(t)′.

(Use the definition of multiplication of matrices using summation notation. Do not
write out matrices with ellipses.)

Problem 2. Consider the system

x′1 = x1 + 4x2

x′2 = 4x1 + x2

Find the solution to this system with initial condition x(0) = (1, 3) by diagonalizing
a matrix and exponentiating by hand. Don’t use a computer (except to check your
work, if you’d like), and show your work.

Problem 3. Let A ∈ Mn(F ) and let W ⊆ F n be a subspace. Suppose W is
invariant under A, i.e., Aw ∈ W for all w ∈ W . Let x′ = Ax have solution x(t)
with x(0) = x0 ∈ W . The goal of this problem is to show that x(t) never leaves the
subspace W . To prove this, fix t and define the sequence

xn =

(
n∑

k=0

Aktk

k!

)
x0

for each n ≥ 0. Since Ax0 ∈ W , it easily follows that xn ∈ W for all n.

Now, the space W is complete, i.e., every Cauchy sequence in W converges to a point
in w ∈ W . That’s because W is linearly isomorphic to Fm where m = dimW , which
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is complete.) Therefore, if we can show that (xn) is a Cauchy sequence, the result
will follow since

x(t) = eAtx0 = lim
n→∞

xn = w ∈ W.

Problem. Your job is to prove that the sequence (xn) is a Cauchy sequence. You
may use the fact that eAt is Cauchy for each t (as shown in class). Give an ε-N proof.
Lemma 1, from the lecture on Monday Week 3 may be of use.

Problem 4. (D’Alembert reduction trick.) Suppose you have found a solution a(t)
to a differential equation of degree n

qn(t)y(n) + qn−1(t)y
(n−1) + · · ·+ q1(t)y

′ + q0(t)y = 0.

Substitute y(t) = u(t)a(t). Then, after cancellation, substitute v = u′ to get an
equation of the form

aqn(t)v(n−1) + pn−2(t)v
(n−2) + · · ·+ p0(t)v = 0,

of degree n− 1.

(a) Write out the details of this reduction procedure for the case n = 3.

(b) Apply the reduction procedure to find the most general solution to

t2y′′ − 3ty′ + 4y = 0

given the solution a(t) = t2. You may assume that the initial conditions are such
that t > 0 and the substituted quantities are positive.
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Math 322 Homework 5

Problem 1. Recall that for the Jordan block matrix Jk(λ), we have

(Jk(λ)− λIk)e1 = e1,

i.e., e1 is an eigenvector for Jk(λ), and

(Jk(λ)− λIk)ei = ei−1

for i = 2, . . . , k. So in order to put an n × n matrix A into Jordan form, for each
eigenvalue λ, we look for vectors vi such that

(A− λIn)v1 = v1,

and
(A− λIn)vi = vi−1

for i = 2, . . . These vi will end up as columns in a matrix P for which P−1AP is in
Jordan from.

This problem will consider a simple example of this procedure. Let

A =

(
1 4
−1 5

)
.

Do all of the following exercises by hand, and show your work.

(a) Compute the characteristic polynomial p(x) for A, and factor it to find the single
eigenvalue λ for A (with multiplicity 2).

(b) Find an eigenvector v1 for λ with integer components (to make things simple).

(c) Find a vector v2, again with integer components, such that

(A− λI2)v2 = v1.

(d) Let P be the matrix with columns v1 and v2 (in that order), and show that P−1AP
is in Jordan form.

Problem 2. Find all possible Jordan forms for a matrix with a single real eigen-
value u ∈ R of multiplicity 4 (up to permutations of the blocks).
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Problem 3. Let A ∈ M4(R) with two not necessarily distinct real eigenvalues u
and v and one pair of conjugate non-real eigenvalues a ± bi. Find the possible real
Jordan forms for A (up to permutation of blocks and ±b).

Problem 4. Describe all possible Jordan forms for a real 2×2 degenerate system (i.e.,
with determinant 0). There are two possibilities for which 0 is a repeated eigenvalue
and an infinite class of possibilities for which 0 is an eigenvalue of multiplicity 1. For
each, describe the solution to x′ = Jx with initial condition x0 = (α, β) ∈ R2.

Problem 5. Solve the system

x′ =

(
−1 1

0 −1

)
x+

(
0
1

)
,

with initial condition x(0) = (7, 5) ∈ R2, using the method from section 1.10 of our
text. (Using the notation from section 1.10, take Φ(t) = eAt. Show your work).
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Math 322 Homework 6

Problem 1. Let A ∈ Mn(F ) and let t 7→ b(t) ∈ F n be continuous. Let x0 ∈ F n,
and let u and v be solutions to the initial value problem

x′(t) = Ax(t) + b(t) and x(0) = x0. (1)

We have shown that for each initial condition y0 ∈ F n, that the solution to y′(t) =
Ay(t) with y(0) = y0 is unique. Use this result to show that u = v (i.e., the solution
to system (1) is unique.)

Problem 2. We found that the solution to the forced harmonic oscillator problem

x′′ = −x+ f(t)

has the solution

x(t) = x(0) cos(t) + x′(0) sin(t) +

∫ t

s=0

f(s) sin(t− s) ds.

We also saw by integrating that in the case f(t) = cos(ωt), the solution is

x(0) cos(t) + x′(0) sin(t) +
cos(ωt)− cos(t)

1− ω2
.

While solving this equation, at some point we assumed ω 6= ±1.

(a) Go back to our solution and revise it to get a solution in the case where ω = 1,
and thus solve the forced harmonic oscillator problem with f(t) = cos(t). Use
the identity

sin(θ + ψ) + sin(θ − ψ) = 2 cos(ψ) sin(θ),

and show your work.

(b) Graph the solution with initial condition x(0) = x′(0) = 1, enough to get a
qualitative sense of the nature of the solution.

Problem 3. Consider the n-th order differential equation with constant coefficients

y(n) + an−1y
(n−1) + · · ·+ a1y

′ + a0y = 0.

The characteristic polynomial for the equation is P (x) = xn+an−1x
n−1+· · ·+a1x+a0.

Define the differential operator D = d
dt

. Then our differential equation may be written

P (D)y = 0.
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Suppose that P factors as P (x) =
∏k

j=1(x − λj)
mj where the λj are distinct. We

would like to show that the basic functions for our equation,{
tjeλit : 0 ≤ j ≤ mi − 1, 1 ≤ i ≤ k

}
are solutions. So we need to show for each i that

P (D)(t`eλit) = 0 (2)

for 0 ≤ ` ≤ mi − 1. We do this in steps.

(a) Prove by induction that for every sufficiently differentiable function f(t), we have

(D − λ)k(f(t)eλt) = eλtDkf(t)

for k ≥ 0.

(b) Use the above result to prove that for each i, equation (2) holds for 0 ≤ ` ≤ mi−1.
You may use the fact that since D commutes with constants and with itself,

(D − λ)(D − µ) = (D − µ)(D − λ).

Problem 4. Let f(t) be a real-valued integrable function on some open interval I
containing 0, and let x0 ∈ R. Consider the initial value problem

x′(t) = f(x(t))

x(0) = x0.

By the fundamental theorem of calculus,

x(t) := x0 +

∫ t

s=0

f(x(s)) ds

is a solution. (You could check by computing x′(t) and x(0).) Even if we cannot
compute the integral directly, we can attempt to find a solution via the method of
successive approximations. Define

u0(t) := x0

and for k ≥ 0,

uk+1(t) := x0 +

∫ t

s=0

f(uk(s)).

Consider the case where f(t) = λt for some λ ∈ R.
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(a) Apply the method of successive approximations to find u1, u2, and u3.

(b) Identify limn→∞ un. No proof is necessary.

(c) Solve the initial value problem exactly using methods we already know. (Your
solution should agree with the limit you just calculated.)
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Math 322 Homework 7

Problem 1. Let X, Y be subsets of normed linear spaces (V, ‖ ‖V ) and (W, ‖ ‖W ),
respectively, and suppose f : X → Y . Then f is continuous if for all u ∈ X and for
all ε > 0, there exists δ = δ(u, ε) > 0 such that ‖u−v‖V < δ implies ‖f(u)−f(v)‖W <
ε.

(a) For any normed linear space (V, ‖ ‖), prove that ‖ ‖ : V → R is continuous (with
the usual norm on R).

(b) Let X be a subset of a normed linear space (V, ‖ ‖). Suppose T : X → X is a
contraction mapping. Prove that T is continuous.

Problem 2. Our existence-uniqueness theorem applies to an initial value problem

x′ = f(x)

x(0) = x0

where f is a continuously differentiable function. If f is just continuous, it no longer
applies. Here is an example: consider the initial value problem

x′ = 2
√
x

x(0) = 0.

For each a > 0, define

xa(t) :=

{
0 if t ≤ a

(t− a)2 if t > a.

(a) Sketch the graph of xa(t).

(b) Each xa(t) is clearly differentiable away from t = a. Use the definition of the
derivative to prove that xa(t) is differentiable at t = a.

(c) Show that each xa(t) solves the initial value problem.

Problem 3. Read Theorems 1 and 2 in Section 2.4 (The Maximal Interval of Exis-
tence). Consider the initial value problem

x′1 = x21 x1(0) = 1

x′2 = x2 +
1

x1
x2(0) = 1.
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(a) Solve the initial value problem showing your technique.

(b) What is the maximal interval of existence (α, β)?

(c) Use a computer to draw the vector field and your solution in a single plot.

(d) How is Theorem 2 exemplified by your solution?

(e) What is the speed of your solution at each time t in the interval of existence?
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Math 322 Homework 8

Problem 1. We recently considered linearizing a system x′ = f(x) at an equilibrium
point x0, i.e., at a point where f(x0) = 0 by considering the system x′ = Jf(x0)x
where Jf(x0) is the Jacobian matrix of f as the origin. We could hope that the
linearized system would determine the nature of the equilibrium point for the original
system. The following example shows that hope is unfounded if the linearized system
has a center at the origin. (It turns out that in general for this case, x0 is either a
center or a focus for the original system.) Consider the system

x′ = −y + xy2

y′ = x+ y3

(a) What is the linearized system at the equilibrium point (0, 0)?

(b) What are the eigenvalues for the linearized system? (You’ll find the real parts
of these are 0, and hence describe a center.)

(c) Convert to polar coordinates: r2 := x2 + y2, x = r cos(θ), and y = r sin(θ). For
the original system, prove that r′ = r3 sin2(θ) and θ′ = 1.

(d) What does part (c) say about solutions for our original system?

(e) Use a computer to plot the vector field for the original system. Here is sample
code for Sage:

x,y = var('a,b')

plot_vector_field((-y,x),(x,-2,2),(y,-2,2),aspect_ratio=1)

or

streamline_plot((-y,x),(x,-2,2),(y,-2,2),aspect_ratio=1,density=2)

(Please see the posting for last week’s homework on our class homepage for
instructions on including a plot in your LaTeX document.)

Problem 2. Consider the system

x′ = x− xy
y′ = y − x2
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(a) Find all the equilibrium points x0, i.e, the points x0 at which f(x0) = 0.

(b) For each equilibrium point x0, compute the Jacobian Jf(x0)x and consider the
linear system

x′ = Jf(x0)x

x(0) = x0

Classify the origin for this linearized system as a saddle, a stable or unstable
node, a stable or unstable focus, or a center.

(c) Use a computer to plot the vector field, including all the equilibrium points.

Projective space. Here is an example of an important manifold, n-dimensional
projective space, Pn. As a set, Pn is the collection of one-dimensional linear subspaces
of Rn+1, i.e., all lines through the origin in Rn+1. Every one-dimensional subspace
is the same thing as the span of some nonzero vector. Two nonzero vectors x, y ∈
Rn+1 determine the same one-dimensional subspace if and only if there is a nonzero
scalar λ such that x = λy, and in this case we will write x ∼ y. Then ∼ is an
equivalence relation on nonzero elements of Rn+1. The equivalence classes are in one-
to-one correspondence with one-dimensional subspaces and hence with points in Pn.
Therefore, sometimes one will see the following definition for projective space

Pn =
(
Rn+1 \ {0}

)
/ (x ∼ λx, λ 6= 0) .

Abusing notation, one usually refers to a point in Pn as x = (x0, . . . , xn) when one
really means the one-dimensional space spanned by x. In that case, x0, . . . , xn are
called the homogeneous coordinates of the point in projective space.

Recall that a manifold is a connected metric space M with an atlas. The atlas is
a collection of pairs (hα, Uα) where each Uα is an open subset of M and hα is a
homeorphism of Uα to some open subset Vα of Rn. We require that the union of the
Uα is M and if Uα ∩ Uβ 6= ∅, then the transition function

hβ ◦ h−1α : hα(Uα ∩ Uβ)→ hβ(Uα ∩ Uβ)

is a differentiable function. The standard atlas for Pn consists of n+ 1 charts (hi, Ui)
where, for i = 0, . . . , n,

Ui = {(x0, . . . , xn) ∈ Pn : xi 6= 0}

and

hi : Ui → Rn

(x0, . . . , xn) 7→
(
x0
xi
, . . . ,

x̂i
xi
, . . . ,

xn
xi

)
2



where the symbol ̂ is used to denote omitting the i-th term. Also note that Ui is
well-defined since if xi 6= 0 then λxi 6= 0 for every λ 6= 0.

For the following exercises, we let n = 2 and consider the projective plane, P2.

(a) Explicitly describe hi(x0, x1, x2) for i = 0, 1, 2.

(b) Compute the inverse of h0, mapping R2 → U0.

(c) Compute the transition function h1 ◦ h−10 .

(d) Compute the Jacobian matrix for the transition function h1 ◦ h−10 , and explain
why its entries are continuously differentiable for each p ∈ h0(U0 ∩U1)? (Hence,
this transition function is continuously differentiable, and by symmetry, so are
all the others.)
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Math 322 Homework 9

Problem 1. Consider the system

x′ = −x
y′ = y + x3.

(a) Use the method of successive approximations given in class to compute the stable
manifold for the equilibrium at the origin. (It converges fairly quickly.)

(b) Compute the exact solution with arbitrary initial condition (x0, y0) using meth-
ods from the beginning of the semester. (Any constants you use should be
expressed in terms of x0 and y0.) Show your work.

(c) From your answer to part (b), find the initial conditions (x0, y0) such that corre-
sponding solution converges to (0, 0) as t→∞. (Your answer to part (a) should
provide a check!)

(d) From your answer to part (b), find the initial conditions (x0, y0) such that cor-
responding solution converges to (0, 0) as t→ −∞, the unstable manifold.

(e) Draw the vector field with superimposed stable and unstable manifolds at (0, 0).

Problem 2. Solve the system

x′ = −x
y′ = −y + x2

z′ = z + y2

using methods from the beginning of the semester, and use your solution to show that
the points in the stable manifold satisfy

z = −1

3
y2 − 1

6
x2y − 1

30
x4

and the points on the unstable manifold satisfy

x = y = 0.

(It would be great if anyone could come up with a nice visualization of this!)
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Problem 3. Sinks, sources, and saddles. Consider the differential equation
x′ = f(x). Any point x0 in the domain of f such that f(x0) = 0 is called an equilibrium
point or critical point for the equation. An equilibrium point x0 is called a sink if all
eigenvalues of the Jacobian matrix Jf(x0) have negative real part; it is called a source
if all eigenvalues of Jf(x0) have positive real part; and it is called a saddle if Jf(x0)
has at least one eigenvalue with positive real part, at least one eigenvalue with negative
real part, and no eigenvalues with zero real part. Equilibrium points like these, with
no eigenvalue having real part equal to zero, are called hyperbolic equilibrium points.
The Hartman-Grobman theorem says that near a hyperbolic equilibrium point x0, a
nonlinear system x′ = f(x) will behave qualitatively like the associated linear system
x′ = Jf(x0)x does near the origin.

For the systems with f(x) as follows, (i) find all equilibrium points, and (ii) classify
each hyperbolic equilibrium point as a sink, source, or saddle, and (iii) draw a picture
of the vector field which includes all of the equilibrium points.

(a)

(
x1 − x1x2

x2 − x2
1

)

(b)

(
−4x2 + 2x1x2 − 8

4x2
2 − x2

1

)
.
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Math 322 Homework 10

Problem 1. The equilibrium point at the origin for the system(
x′

y′

)
=

(
0 −1
1 0

)(
x
y

)
is a center (since the eigenvalues of the linear function on the right are ±i). In this
problem, we show that perturbing the system a little can lead to various types of
equilibrium points at the origin.

Establish the following results using the Liapunov function V (x, y) = x2 + y2:

(a) The origin is an asymptotically stable equilibrium point for the system(
x′

y′

)
=

(
0 −1
1 0

)(
x
y

)
+

(
−x3 − xy2
−y3 − x2y

)
.

(b) The origin is an unstable equilibrium point for the system(
x′

y′

)
=

(
0 −1
1 0

)(
x
y

)
+

(
x3 + xy2

y3 + x2y

)
.

(c) The origin is a stable equilibrium point which is not asymptotically stable for
the system. What can you say about the solution trajectories in this case?(

x′

y′

)
=

(
0 −1
1 0

)(
x
y

)
+

(
−xy
x2

)
.

(d) Draw the vector field or the flow diagrams for the above three systems in order
to verify your results.

Problem 2. The point of this problem is to give an example of an asymptotically
stable equilibrium point that is not stable. Consider the following system, defined on
R2 \ {(0, 0)}:

x′ = x− y − x(x2 + y2) +
xy√
x2 + y2

y′ = x+ y − y(x2 + y2)− x2√
x2 + y2

.
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(a) Converting to polar coordinates, x = r cos(θ), y = r sin(θ), since r2 = x2 + y2,
we have

rr′ = xx′ + yy′,

which makes it easy to compute r′ directly from the equation for the system.
Similarly, it is easy to check (by substituting the polar coordinates for x and y)
that

r2θ′ = xy′ − x′y.

For this problem, find an expression for r′ completely in terms of r and an
expression for θ′ completely in terms of θ. You may have use for the half-angle
formula

sin2(θ/2) =
1− cos(θ)

2
.

(b) Solve the converted system completely, i.e., for each initial condition. Your
solution should write r2 as a function of time and the initial condition r0 and
should write cot(θ/2) as a function of time and the initial condition θ0. Show your
work (you may need to review integration using partial fractions and integration
of trig functions.) Don’t forget the “duh” solutions where θ = 0 or r = 1.

(c) Show that the equilibrium point (1, 0) is asymptotically stable but not stable.
(It might help to remember what the plot of the cotangent function looks like.)

(d) Create a phase portrait (picture of the flow of the vector field). (With Sage, you
can use streamline_plot.)
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Math 322 Homework 11

Problem 1. Use the index formula

If (C) =
1

2π

∮
C

P dQ−QdP
P 2 +Q2

to compute the index of a saddle at the origin.

Problem 2. Let z = x+ iy and consider the vector field in the complex plane given
by

z′ = x′ + iy′ = zk

where k ∈ Z. Thus, we are interested in the system

x′ = Re(zk)

y′ = Im(zk).

The origin is the unique critical point for the system.

(a) What is the index of the origin, in general, for the system z′ = zk? Explain.
Hint: write z = reiθ and imagine traveling counterclockwise around a unit circle
centered at the origin. At the point eiθ on the circle, what is the angle of the
vector zk? What is the total change as your go around the circle?

(b) Draw the vector field for the case k = 3.

(c) Draw the vector field for the case k = −3. (For a check, you could make sure
for yourself that the index in these last two parts agrees with your answer to
part (a).)

Problem 3. Let M be a compact oriented two-dimensional manifold. It turns out
that this means that M is a donut with g holes for some g ∈ N. Triangulate M :
draw triangles on the surface so that every point in M is in some triangle and if two
triangles meet, they either do so vertex-to-vertex or edge-to-edge:
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Let V be the number of vertices, E the number of edges, and F the number of faces
of the triangulation. Create a vector field on each triangle vanishing at seven points,
as shown below:

Consider the resulting vector field on M . What is the sum of the indices of the critical
points in terms of V , E, and F? Explain.

Problem 4. Let D := {(x, y) ∈ R2 : x2 + y2 ≤ 1} be the unit disk in the plane
centered at the origin. Suppose that φ : D → D is a smooth function. We would like
to use index theory to prove that φ has a fixed point on D, i.e., there is a point p ∈ D
such that φ(p) = p.

(a) Define a vector field f on D by

f(p) := φ(p)− p.

Let C be the boundary of D, and suppose that f does not vanish anywhere on C.
What is If (C), the index of C relative to f? Explain.

(b) Explain why part (a) would lead to a contradiction if φ had no fixed points.
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Math 322 Homework 12

Problem 1. For this problem please refer to the notes for Friday, Week 11, and
Monday, Week 12. In the first part of these notes, we described how to induce a flow
on the unit sphere centered at the origin in R3 and then analyze a critical point (a, b, 0)
on the equator by projecting the flow to the x = 1 plane. We gave coordinates u, v to
the x = 1 plane and derived a system of differential equations in these coordinates. To
analyze the critical point (a, b, 0) on the equator, we could then analyze the critical
point

(
b
a
, 0
)

in the u, v-plane. Antipodal points have similar behavior except that
directions may be reversed depending on the parity of d = max{degP, degQ}, using
the notation in the handout.

Carry out the same analysis for projection to the y = 1 plane (this time assuming
b 6= 0) to derive the system of equations

u′ = vd
(
P

(
u

v
,

1

v

)
− uQ

(
u

v
,

1

v

))

v′ = −vd+1Q

(
u

v
,

1

v

)
.

Explain your steps.

Problem 2. For each system below

i. Find and classify each critical point in the plane (sink, source, saddle, etc.)

ii. Determine and analyze the critical points at infinity (projecting to the x = 1
plane unless the critical point is (0,±1, 0), in which case, project to the y = 1
plane).

iii. Draw the global phase portrait. (For ease of TeX-ing, I would recommend using
a tablet or hand-drawing the phase portrait and taking a photo. Then include
the resulting filed using \includegraphics.)

iv. Use a computer to create a picture of the vector field or flow. (In Sage, you may
want to use streamline plot instead of plot vector field.)

(a)

x′ = 2x

y′ = y.

1



(b)

x′ = x− y

y′ = x + y.

(c)

x′ = 2x− 2xy

y′ = 2y − x2 + y2.

(d) In this problem, you’ll get critical points at∞ that aren’t isolated. Just analyze
the one at (1, 0, 0).

x′ = x

y′ = y.
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