
Math 322 lecture for Monday, Week 10

Equilibrium points for planar systems

Consider a general planar system

x′ = P (x, y)

y′ = Q(x, y).

By translating, we can assume that any equilibrium point we are interested in sits at
the origin.

Here are some types of equilibrium points.

1. The origin is a center if there exists δ > 0 such that every trajectory with initial
condition in Bδ \ {(0, 0)} is a closed curve containing (0, 0) in its interior.

2. Let r(t, r0, θ0) and θ(t, r0, θ0) denote the solution to our system in polar coordinates
and with initial conditions r(0) = r0 and θ(0) = θ0. The origin is a stable focus
if there exists δ > 0 such that 0 < r0 < δ and θ0 ∈ R imply r(t, r0, θ0) → (0, 0)
and |θ(t, r0, θ0)| → ∞ as t → ∞. It is an unstable focus if the same holds
as t→ −∞.

3. The origin is a stable node if there exists δ > 0 such that for 0 < r0 < δ
and θ0 ∈ R, we have r(t, r0, θ0) → (0, 0) as t → ∞ and limt→∞ θ(t, r0, θ0) exists.
In other words, the trajectories approach the origin with a well-defined tangent.
It’s an unstable node if the same holds with t → −∞. A node is called proper
if every ray through the origin is tangent to some trajectory.

4. The origin is a topological saddle if it is locally homeomorphic to a saddle for a
linear system.

5. The origin is a center-focus if there exists a sequence of closed solution curves Γn
with Γn+1 in the interior of Γn such that Γk → (0, 0) as k → ∞ and such that
every solution with initial condition between Γn and Γn+1 spirals toward either Γn
or Γn+1 as t→ ±∞.

Summary of results for hyperbolic equilibria.

Let x0 = (0, 0) be a hyperbolic equilibrium point and assume that P and Q are
continuously differentiable. Then

1. The point x0 is a topological saddle if and only if the linearized system has a saddle
at the origin. (This follows from Hartman-Grobman.)
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2. If the linearized system has a center, then x0 is either a center, a focus, or a center-
focus. The case of a center-focus cannot occur if P and Q are analytic at x0, i.e., if
they can be expressed as power series that converge in some disc about the origin.

3. If x0 is a node then the linearized system it’s a node or a focus for the nonlinear
system. Similarly, if it’s a focus for the linearized system, then its a node or focus
for the nonlinear system. If f has continous second partials, then if x0 is a node
for the linearized system, it is also a node for the nonlinear system, and similarly
for foci. (See our text, Example 5, Section 2.10.)

Example. Here is an example of a center-focus:

x′ = −y + x
√
x2 + y2 sin

(
1√

x2 + y2

)

y′ = x+ y
√
x2 + y2 sin

(
1√

x2 + y2

)
.

for x2 + y2 6= 0, and with f(0, 0) = (0, 0) where f is the right-hand side of the above.
(In particular, it turns out that f is not analytic at the origin.) Changing to polar
coordinates gives the system

r′ = r2 sin

(
1

r

)
θ′ = 1

for r > 0, and r′ = 0 for r = 0. So θ = t + θ0, and if sin(1/r) = 0, i.e., if r = 1
nπ

for
any n ∈ Z>0, we have r′ = 0. So the circles of radius 1

nπ
are trajectories. If

nπ <
1

r
< (n+ 1)π,

i.e., if
1

(n+ 1)π
< r <

1

nπ
,

then r′ < 0 if n is odd and r′ > 0 if n is even. Which means the trajectories will
either spin inwards or outwards towards one of the circular trajectories. A partial
picture appears below:
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Nonhyperbolic equilibria. Please set our text, Section 2.11 for a description of
possible behaviors for a nonhyperbolic equilibrium point for a two-dimensional sys-
tem. In particular, please learn the meaning of the following terms: sector, hyperbolic
sector, parabolic sector, elliptic sector, saddle-node.

Note the comment on p. 150: if the linearized system is nonzero, the only types
of equilibrium points that can occur beside those already mentioned for analytic
systems are saddle-nodes, critical points with elliptic domains, and cusps. The book
gives examples of each of these:

saddle-node (two hyperbolic sectors, one parabolic sector):

x′ = x2

y′ = y

critical point with elliptic domain (one elliptic sector, one hyperbolic sector, two
parabolic sectors, four separatrices):

x′ = y

y′ = −x3 + 4xy

cusp (two hyperbolic sectors, two separatrices):

x′ = y

y′ = x2
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