Math 322 lecture for Monday, Week 10

EQUILIBRIUM POINTS FOR PLANAR SYSTEMS

Consider a general planar system

' = P(z,y)
y = Qz,y).

By translating, we can assume that any equilibrium point we are interested in sits at
the origin.

Here are some types of equilibrium points.

1.

The origin is a center if there exists § > 0 such that every trajectory with initial
condition in Bs \ {(0,0)} is a closed curve containing (0, 0) in its interior.

. Let r(t,rg, 0p) and O(t, ro, 6y) denote the solution to our system in polar coordinates

and with initial conditions r(0) = 7 and #(0) = #y. The origin is a stable focus
if there exists § > 0 such that 0 < 7y < 0 and 6y € R imply r(¢,ro,6y) — (0,0)
and |0(t,79,6p)] — 00 as t — oo. It is an unstable focus if the same holds
as t — —oo.

. The origin is a stable node if there exists 6 > 0 such that for 0 < rq < ¢

and 0y € R, we have r(t,ro,0y) — (0,0) as t — oo and limy;_,, 0(t, o, 6y) exists.
In other words, the trajectories approach the origin with a well-defined tangent.
It’s an unstable node if the same holds with ¢ — —oc. A node is called proper
if every ray through the origin is tangent to some trajectory.

. The origin is a topological saddle if it is locally homeomorphic to a saddle for a

linear system.

. The origin is a center-focus if there exists a sequence of closed solution curves I',

with T',41 in the interior of T',, such that T'y, — (0,0) as & — oo and such that
every solution with initial condition between I',, and I, spirals toward either I,
or I'yyq as t — Fo0.

Summary of results for hyperbolic equilibria.

Let zp = (0,0) be a hyperbolic equilibrium point and assume that P and @ are
continuously differentiable. Then

1.

The point xg is a topological saddle if and only if the linearized system has a saddle
at the origin. (This follows from Hartman-Grobman.)
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2. If the linearized system has a center, then x is either a center, a focus, or a center-
focus. The case of a center-focus cannot occur if P and () are analytic at xq, i.e., if
they can be expressed as power series that converge in some disc about the origin.

3. If g is a node then the linearized system it’s a node or a focus for the nonlinear
system. Similarly, if it’s a focus for the linearized system, then its a node or focus
for the nonlinear system. If f has continous second partials, then if z( is a node
for the linearized system, it is also a node for the nonlinear system, and similarly
for foci. (See our text, Example 5, Section 2.10.)

Example. Here is an example of a center-focus:

1
= —y+ a2+ y?sin | ——
vVt +y?

1
y =ax+yya?+y?sin [ ———— | .
V2 +y?

for 2% + y* # 0, and with f(0,0) = (0,0) where f is the right-hand side of the above.
(In particular, it turns out that f is not analytic at the origin.) Changing to polar

coordinates gives the system
1
r’ = r?sin <—>
r

0 =1

for r > 0, and ' = 0 for r = 0. So 6 =t + 6y, and if sin(1/r) = 0, i.e., if r = = for
any n € Z-g, we have ' = 0. So the circles of radius % are trajectories. If

1
nt < — < (n+ 1),
r
ie., if
1 e 1
— /r' [EN—
(n+1)m nr’
then " < 0 if n is odd and 7/ > 0 if n is even. Which means the trajectories will
either spin inwards or outwards towards one of the circular trajectories. A partial
picture appears below:
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Nonhyperbolic equilibria. Please set our text, Section 2.11 for a description of
possible behaviors for a nonhyperbolic equilibrium point for a two-dimensional sys-
tem. In particular, please learn the meaning of the following terms: sector, hyperbolic
sector, parabolic sector, elliptic sector, saddle-node.

Note the comment on p. 150: if the linearized system is nonzero, the only types
of equilibrium points that can occur beside those already mentioned for analytic
systems are saddle-nodes, critical points with elliptic domains, and cusps. The book
gives examples of each of these:

saddle-node (two hyperbolic sectors, one parabolic sector):

critical point with elliptic domain (one elliptic sector, one hyperbolic sector, two
parabolic sectors, four separatrices):

/

7=y
y = —2® + dxy

cusp (two hyperbolic sectors, two separatrices):
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