Math 322 lecture for Monday, Week 8

STABLE MANIFOLD THEOREM

Review of stable, unstable, and center subspaces. Consider the linear sys-
tem 2/ = Az for some A € M,(R). Suppose that the generalized eigenvectors
and their corresponding eigenvalues for A are u; + iv; and \; = a; + ib;, respec-
tively, for j = 1,...,n. Thus, putting these vectors as columns in a matrix P,
we have P~'AP = J where J is the Jordan form of A. The generalized eigenvec-
tors u; + iv; for which b; # 0 come in conjugate pairs since A is a real matrix. Then
the stable, unstable, and center subspaces for the system are, respectively,

E?® := Span{u;,v; : a; < 0}
E" := Span{u;,v; : a; > 0}
E° := Span{u;,v; : a; = 0}.
Recall that up to a change of coordinates, the solution to the system is e’* and

that for a Jordan block corresponding to \; = a; + ib;, we can factor out e’ =
e%*(cos(b;t) 4 isin(b;t)), leaving a matrix that is polynomial in ¢:

ﬁ tZ—l

1

t & o
t(—?
0 1 o)1
0 0 1 ... ... =
ng(Aj)t — 6)\jt (e=-3)!
0 t
0 1

Thus, it is the signs of the a; that determine the long-term behavior of the system.

Theorem. (Stable manifold theorem.) Let £ C R"™ and let f € C'(E). Suppose
that f(0) = 0 and that Dfy has k eigenvalues with negative real part and n — k
eigenvalues with positive real part. Let ¢ be the flow for the system z/ = f(z).
Then there exists a k-dimensional differentiable manifold S tangent to the stable
subspace E® of the linearized system z’ = Dfy(z) at 0 and there exists an (n —
k)-dimensional differentiable manifold U tangent to the unstable space E* of the
linearized system. Further

lim ¢(p) =0
t—ro0

for any p € S and
lim ¢(p) =0

t——o00



for any p € U.

Remark. To apply this theorem to an arbitrary equilibrium point xg, make the
change of coordinates = — x — z¢, find the stable and unstable manifolds at the
origin, and translate back x +— x + x.

Example. The system

= —x—y?
y =y+a’

has an equilibrium point at the origin. The Jacobian for f(x,y) = (—x — 4%,y + 2?)

1s 1 oy

JF(0,0) = ( o ?)

/
r = —T

Yy =vy.

Therefore,

and the linearized system is

(The linearized system in this case is easy to read off of the original system in this case
since the equilibrium point is the origin and f has components that are polynomials
since f is it’s own Taylor expansion at the origin.)

The main thing that concerns us, though, is that the eigenvalues for D f(y oy are %1.
The eigenspace for —1 is spanned by (1,0), i.e., the x-axis, and the eigenspace for 1
is spanned by (0, 1), the y-axis. So a stable manifold for our original system should
be tangent to the x-axis and an unstable manifold should be tangent to the y-axis at
the origin. Here is a picture of the flow of the vector field f:
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From the picture, we can see that the vector field is not tangent to the stable and un-
stable spaces for the linearized system at the origin everywhere. The stable manifold
theorem is a statement about what is happening locally, very close to the equilibrium

T % K\\

N | \\\

Sketch of proof of the stable manifold theorem. The proof of the stable manifold the-
orem, like the proof of the fundamental existence and uniqueness theorem can be
done by the method of successive approximations.

/
i

ﬁ

We start with some “pre-processing”: As mentioned above, if the equilibrium point xq
is not the origin, first replace x by x — xy. Suppose that has been done. Second, write

v = f(z) = Jf(0)x + (f(x) — Jf(0)) .

Defining F(x) := f(z) — Jf(0)z, our system becomes

~

Third, choose an n x n real matrix P such that

PrIf0)P = ( 61 g )

where A has k eigenvalues with negative real parts and B has n — k eigenvalues with
positive real parts. Finally, make the change of variables y = P~'z. Then

¥ =Jf0)x+F(x) = Py =Jf(0)Py+ F(Py)
= ' =P 'Jf(0)Py+ P 'F(Py).

Define G(y) = P~'F(Py) to get the system
, (A0
/= (% 5 )v+cw )
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Each step we've made is reversible. So solving this system is equivalent to solving
the original system.

We now find stable and unstable manifolds through the method of successive approx-

imations. Define
et 0 0 0
= (500wt o= (2 5)

OB —U@) + V).

For t € R and a € R", define an operator T' on R"-valued functions u with domain
in a region near the origin in R x R™ by

Uw@ﬂ%:U@a+/

s=0

so that

t [ee)

Ut —s)G(u(s,a))ds — / V(t—s)G(u(s,a))ds. (2)

s=t

Now use the method of successive approximations starting with
ul®(t,a) =0 € R".

Calculations like those we did for the proof of the fundamental existence and unique-
ness theorem show the approximations u(™ (¢, a) converge to a fixed point u(t) of T
for ¢ in a small interval about the origin and for a restricted to a sufficiently small
neighborhood of the origin in R".

A stable manifold for equation (1) is given as the set of points
(a1,...,ag, ugs1(0,a1,...,a5,0,...,0),...,u,(0,a1,...,a;,0,...,0))

as (ai,...,a) varies in a neighborhood of the origin in R*. We get a stable manifold
for the original system by applying P to these points, since y = P~1z, then translating
back z — x + xy, if the original equilibrium point was not the origin.

To find an unstable manifold, replace t by —t to get the system

M=—<§'g)y—ﬂw,

since (y(—t))’ = —y'(—t). However, now note that —A has k positive eigenvalues
and — B has n — k negative eigenvalues, so to apply the above argument, we need to
swap coordinates ¢: y — (Yg+1,- -+, Yn, Y1, - - -, Yr) tO get the system

0o = (2 ) ot - Gl

apply the method of successive approximations, then swap back by applying ¢! to
the points in the resulting manifold. O



As evidence for the reasonableness of the method presented in the sketch above sup-
pose that y(¢) is a solution to equation (2) with (i) initial condition y(0) close to 0
and such that (ii) y(t) is bounded as t — oo. We will show that y must satisfy
equation (2) (and thus will be a fixed point of the iterative process). Let

v (1)

so that the system becomes

y' = My + G(y).
Then
y =My+Gly) = e My =e™MMy+e™MG(y)
= efMty/ — Me*Mtije*MtG(y)
= e—Mty/ o Me—Mty — B_MtG(y)
= (eMy) =eMG(y)
t t
= / (e Msy(s)) ds = / e MG (y(s) ds
s=0 s=0

S My =u0) = [ NG ds

= y(t) —eMy(0) = /_0 eM(t_S)G(y(s)) ds



To see that the integrals here are all bounded, first note that since y is bounded as
t — oo (by assumption) and G is continuous, we have that G(y(s)) is bounded as
s — 00. Next note that since the real part of the eigenvalues of B are positive, V (t—s)
is bounded as s — oo (recall that V(t — s) = () - )). Continuing,

y(t) = (U) +V(1))y(0) + /:O U(t = 5)G(y(s)) ds

o0

+/°O V(t—s))G(y(s))ds—/ V(t—s))G(y(s))ds

=0 s=t
o)

imwszmm+vw(mm+/ VPﬁﬂM@Mﬁ %)

=0

[e.9]

+/:0 U(t—s)G(y(s))ds—/ V(t—5))G(y(s))ds

=t

Consider the above equation. On the left, we have y(t), which is bounded as ¢t — oc.
One the right, considering the eigenvalues of A and B we see that first, third, and
fourth summands are bounded as t — oo. This implies that

v (s + [ V-G )

=0
is bounded as ¢t — oco. But recall that

vio= (g )

where B has n — k eigenvalues, each with positive real parts. Since

y®+/mvegamm@

=0
is bounded (in fact, constant), this means that

v (w0 + [ voce)ds) o

=0
(Note that the above equation is a product of two matrices. So we cannot conclude
that either of the factors is the zero matrix.) From equation (%), above, it follows
that

o0

) = U0 + [ U =960 ds— [ Vie= )G ds

=t
as we wanted to show.



