
Math 322 lecture for Monday, Week 8

stable manifold theorem

Review of stable, unstable, and center subspaces. Consider the linear sys-
tem x′ = Ax for some A ∈ Mn(R). Suppose that the generalized eigenvectors
and their corresponding eigenvalues for A are uj + ivj and λj = aj + ibj, respec-
tively, for j = 1, . . . , n. Thus, putting these vectors as columns in a matrix P ,
we have P−1AP = J where J is the Jordan form of A. The generalized eigenvec-
tors uj + ivj for which bj 6= 0 come in conjugate pairs since A is a real matrix. Then
the stable, unstable, and center subspaces for the system are, respectively,

Es := Span {uj, vj : aj < 0}
Eu := Span {uj, vj : aj > 0}
Ec := Span {uj, vj : aj = 0} .

Recall that up to a change of coordinates, the solution to the system is eJt and
that for a Jordan block corresponding to λj = aj + ibj, we can factor out eλjt =
eajt(cos(bjt) + i sin(bjt)), leaving a matrix that is polynomial in t:

eJ`(λj)t = eλjt
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Thus, it is the signs of the aj that determine the long-term behavior of the system.

Theorem. (Stable manifold theorem.) Let E ⊆ Rn and let f ∈ C1(E). Suppose
that f(0) = 0 and that Df0 has k eigenvalues with negative real part and n − k
eigenvalues with positive real part. Let φ be the flow for the system x′ = f(x).
Then there exists a k-dimensional differentiable manifold S tangent to the stable
subspace Es of the linearized system x′ = Df0(x) at 0 and there exists an (n −
k)-dimensional differentiable manifold U tangent to the unstable space Eu of the
linearized system. Further

lim
t→∞

φt(p) = 0

for any p ∈ S and
lim
t→−∞

φ(p) = 0
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for any p ∈ U .

Remark. To apply this theorem to an arbitrary equilibrium point x0, make the
change of coordinates x 7→ x − x0, find the stable and unstable manifolds at the
origin, and translate back x 7→ x+ x0.

Example. The system

x′ = −x− y2

y′ = y + x2

has an equilibrium point at the origin. The Jacobian for f(x, y) = (−x− y2, y + x2)
is

Jf(x, y) =

(
−1 −2y
2x 1

)
.

Therefore,

Jf(0, 0) =

(
−1 0
0 1

)
and the linearized system is

x′ = −x
y′ = y.

(The linearized system in this case is easy to read off of the original system in this case
since the equilibrium point is the origin and f has components that are polynomials
since f is it’s own Taylor expansion at the origin.)

The main thing that concerns us, though, is that the eigenvalues for Df(0,0) are ±1.
The eigenspace for −1 is spanned by (1, 0), i.e., the x-axis, and the eigenspace for 1
is spanned by (0, 1), the y-axis. So a stable manifold for our original system should
be tangent to the x-axis and an unstable manifold should be tangent to the y-axis at
the origin. Here is a picture of the flow of the vector field f :
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From the picture, we can see that the vector field is not tangent to the stable and un-
stable spaces for the linearized system at the origin everywhere. The stable manifold
theorem is a statement about what is happening locally, very close to the equilibrium
point. Below, we zoom in on the origin:

Sketch of proof of the stable manifold theorem. The proof of the stable manifold the-
orem, like the proof of the fundamental existence and uniqueness theorem can be
done by the method of successive approximations.

We start with some “pre-processing”: As mentioned above, if the equilibrium point x0
is not the origin, first replace x by x−x0. Suppose that has been done. Second, write

x′ = f(x) = Jf(0)x+ (f(x)− Jf(0)x) .

Defining F (x) := f(x)− Jf(0)x, our system becomes

.

Third, choose an n× n real matrix P such that

P−1Jf(0)P =

(
A 0
0 B

)
where A has k eigenvalues with negative real parts and B has n− k eigenvalues with
positive real parts. Finally, make the change of variables y = P−1x. Then

x′ = Jf(0)x+ F (x) ⇒ Py′ = Jf(0)Py + F (Py)

⇒ y′ = P−1Jf(0)Py + P−1F (Py).

Define G(y) = P−1F (Py) to get the system

y′ =

(
A 0
0 B

)
y +G(y). (1)
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Each step we’ve made is reversible. So solving this system is equivalent to solving
the original system.

We now find stable and unstable manifolds through the method of successive approx-
imations. Define

U(t) :=

(
eAt 0
0 0

)
and V (t) :=

(
0 0
0 eBt

)
so that

e(
A 0
0 B )t = U(t) + V (t).

For t ∈ R and a ∈ Rn, define an operator T on Rn-valued functions u with domain
in a region near the origin in R× Rn by

(Tu)(t, a) := U(t)a+

∫ t

s=0

U(t− s)G(u(s, a)) ds−
∫ ∞
s=t

V (t− s)G(u(s, a)) ds. (2)

Now use the method of successive approximations starting with

u(0)(t, a) = 0 ∈ Rn.

Calculations like those we did for the proof of the fundamental existence and unique-
ness theorem show the approximations u(m)(t, a) converge to a fixed point u(t) of T
for t in a small interval about the origin and for a restricted to a sufficiently small
neighborhood of the origin in Rn.

A stable manifold for equation (1) is given as the set of points

(a1, . . . , ak, uk+1(0, a1, . . . , ak, 0, . . . , 0), . . . , un(0, a1, . . . , ak, 0, . . . , 0))

as (a1, . . . , ak) varies in a neighborhood of the origin in Rk. We get a stable manifold
for the original system by applying P to these points, since y = P−1x, then translating
back x 7→ x+ x0, if the original equilibrium point was not the origin.

To find an unstable manifold, replace t by −t to get the system

y′ = −
(
A 0
0 B

)
y −G(y),

since (y(−t))′ = −y′(−t). However, now note that −A has k positive eigenvalues
and −B has n− k negative eigenvalues, so to apply the above argument, we need to
swap coordinates φ : y 7→ (yk+1, . . . , yn, y1, . . . , yk) to get the system

(φ(y))′ =

(
−B 0
0 −A

)
φ(y)−G(φ(y)),

apply the method of successive approximations, then swap back by applying φ−1 to
the points in the resulting manifold.
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As evidence for the reasonableness of the method presented in the sketch above sup-
pose that y(t) is a solution to equation (2) with (i) initial condition y(0) close to 0
and such that (ii) y(t) is bounded as t → ∞. We will show that y must satisfy
equation (2) (and thus will be a fixed point of the iterative process). Let

M :=

(
A 0
0 B

)
so that the system becomes

y′ = My +G(y).

Then

y′ = My +G(y) ⇒ e−Mty′ = e−MtMy + e−MtG(y)

⇒ e−Mty′ = Me−Mty + e−MtG(y)

⇒ e−Mty′ −Me−Mty = e−MtG(y)

⇒ (e−Mty)′ = e−MtG(y)

⇒
∫ t

s=0

(e−Msy(s))′ ds =

∫ t

s=0

e−MsG(y(s) ds

⇒ e−Mty(t)− y(0) =

∫ t

s=0

e−MsG(y(s)) ds

⇒ y(t)− eMty(0) =

∫ t

s=0

eM(t−s)G(y(s)) ds

⇒ y(t) = eMty(0) +

∫ t

s=0

eM(t−s)G(y(s)) ds

⇒ y(t) = (U(t) + V (t))y(0)

+

∫ t

s=0

(U(t− s) + V (t− s))G(y(s)) ds

⇒ y(t) = (U(t) + V (t))y(0) +

∫ t

s=0

U(t− s)G(y(s)) ds

+

∫ ∞
s=0

V (t− s))G(y(s)) ds−
∫ ∞
s=t

V (t− s))G(y(s)) ds

5



To see that the integrals here are all bounded, first note that since y is bounded as
t → ∞ (by assumption) and G is continuous, we have that G(y(s)) is bounded as
s→∞. Next note that since the real part of the eigenvalues of B are positive, V (t−s)
is bounded as s→∞ (recall that V (t− s) =

(
0 0
0 eB(t−s)

)
). Continuing,

y(t) = (U(t) + V (t))y(0) +

∫ t

s=0

U(t− s)G(y(s)) ds

+

∫ ∞
s=0

V (t− s))G(y(s)) ds−
∫ ∞
s=t

V (t− s))G(y(s)) ds

⇒ y(t) = U(t)y(0) + V (t)

(
y(0) +

∫ ∞
s=0

V (−s)G(y(s)) ds

)
(?)

+

∫ t

s=0

U(t− s)G(y(s)) ds−
∫ ∞
s=t

V (t− s))G(y(s)) ds

Consider the above equation. On the left, we have y(t), which is bounded as t→∞.
One the right, considering the eigenvalues of A and B we see that first, third, and
fourth summands are bounded as t→∞. This implies that

V (t)

(
y(0) +

∫ ∞
s=0

V (−s)G(y(s)) ds

)
is bounded as t→∞. But recall that

V (t) =

(
0 0
0 eBt

)
where B has n− k eigenvalues, each with positive real parts. Since

y(0) +

∫ ∞
s=0

V (−s)G(y(s)) ds

is bounded (in fact, constant), this means that

V (t)

(
y(0) +

∫ ∞
s=0

V (−s)G(y(s)) ds

)
= 0

(Note that the above equation is a product of two matrices. So we cannot conclude
that either of the factors is the zero matrix.) From equation (?), above, it follows
that

y(t) = U(t)y(0) +

∫ t

s=0

U(t− s)G(y(s)) ds−
∫ ∞
s=t

V (t− s))G(y(s)) ds,

as we wanted to show.
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