
Math 322 lecture for Friday, Week 8

global stable and unstable manifolds

Let E be an open subset of Rn containing the origin, 0, and let f : E → Rn be
continuously differentiable. Consider the system of differential equations x′ = f(x).
Suppose 0 is an equilibrium point and that Df0 has k eigenvalues with negative real
part and n− k eigenvalues with positive real part. By the stable manifold theorem,
in a neighborhood of 0 there exists a k-dimensional stable manifold S and an n− k-
dimensional unstable manifold U . The manifold S is tangent at 0 to the stable
space Es for the linearized system x′ = Df0(x). Similarly, U is tangent at 0 to the
unstable space Eu for the linearized system. Further, if φt(x) is the flow for the
system, then

lim
t→∞

φt(p) = 0

for all p ∈ S and
lim

t→−∞
φt(p) = 0

for all p ∈ U .

Define the global stable and unstable manifolds at the equilibrium point 0 by

W s(0) := ∪t≤0φt(S)

and
W u(0) := ∪t≥0φt(U),

respectively. Here, for any subset X ⊂ E,

φt(X) := {φt(x) : x ∈ X} .

It turns out that these manifolds (i) do not depend on our choice of local stable and
unstable manifolds S and U , (ii) are invariant under φt, and (iii) for all p ∈ W s(0),

lim
t→∞

φt(p) = 0

and for all p ∈ W u(0),
lim

t→−∞
φt(p) = 0.

Remark. There is also version of the stable manifold theorem that applies to equi-
librium points where the linearization has eigenvalues with real part equal to zero. It
states that if the linearization has k eigenvalues with positive real part, j eigenvalues
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with negative real part, and m = n − k − j eigenvalues with zero real part, then
there are manifolds W s, W u, and W c tangent to stable, unstable, and central spaces,
respectively, of the linearization having dimensions k, j, and m, respectively. These
spaces are invariant under the flow of the system. See our text, Section 2.7.

Hartman-Grobman theorem

We again consider a system x′ = f(x) as above with equilibrium point x0 = 0. (For
an arbitrary equilibrium point x0, just replace x by x − x0.) We again assume the
linearized system has no eigenvalues with real part equal to 0. These equilibrium
points are called hyperbolic equilibrium points. Roughly, the Hartman-Grobman the-
orem says that in a neighborhood of x0, the system x′ = f(x) and the linearized
system x′ = Dfx0(x) are qualitatively the same, in a way to be made precise below.

Theorem. (Hartman-Grobman) Let E be an open subset of Rn containing the origin,
and let f : E → Rn be continuously differentiable with Jacobian matrix Jf . Suppose
that 0 is a hyperbolic equilibrium point of the system x′ = f(x). Then there exist
open neighborhoods U and V of the origin and a homeomorphism (i.e., a continuous
bijection with continuous inverse)

H : U → V

with H(0) = 0 having the following property: for all x0 ∈ U , there is an interval I ⊆ R
containing the origin such that for all t ∈ I,

H(φt(x0)) = eJf(0)tH(x0).

The theorem says H maps trajectories of the system x′ = f(x) to trajectories of the
linearized system x′ = Jf(0)x in a neighborhood of the origin. (Nonzero equilibria are
handled by translating to the origin, as usual.) The proof of the theorem is outlined in
Section 2.8 of our text and goes, again, by the method of successive approximations.

Example. Consider the system

x′ = −x
y′ = y + x2.

The origin is a hyperbolic equilibrium point, and the linearized system there is

x′ = −x
y′ = y.
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Our text shows how to apply the method of successive approximations to find the
homeomorphism

H(x, y) =

(
x, y +

1

3
x2
)
.

The effect of the mapping is illustrated below with the stable manifolds in blue and
the unstable manifolds in red:

H

The nonlinear system can be solved using the methods we covered during week five
of the semester, and the solution with initial condition (x0, y0) is

x(t) = x0e
−t

y(t) =

(
y0 +

1

3
x20

)
et − 1

3
x20e
−2t.

To find the stable manifold, we find the points (x0, y0) such that the solution with
that initial points converges to (0, 0) as t→∞. For the unstable manifold, we do the
same but with t→ −∞. We find

W s(0, 0) =

{(
x,−1

3
x2
)

: x ∈ R
}

W u(0, 0) = {(0, y) : y ∈ R} .

The solution to the linearized system is

x(t) = x0e
−t

y(t) = y0e
t
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with stable and unstable spaces

Es = {(x, 0) : x ∈ R}
Eu = {(0, y) : y ∈ R} .

Applying H to the solution of the nonlinear system gives

H(φt(x, y)) = H

(
xe−t,

(
y +

1

3
x2
)
et − 1

3
x2e−2t

)

=

(
xe−t,

(
y +

1

3
x2
)
et
)

=

(
e−t 0
0 et

)(
xe−t(

y + 1
3
x2
)
et

)
= eJf(0,0)tH(x, y).

The stable and unstable manifolds for the nonlinear system are mapped by H to the
stable and unstable spaces, respectively, for the linear system:

H

(
x,−1

3
x2
)

= (x, 0),

and
H(0, y) = (0, y).
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