Definition. An equilibrium point for a system of differential equations in \mathbb{R}^n

$$x' = f(x)$$

is a point $p \in \mathbb{R}^n$ such that f(p) = 0.

The reason for the terminology is that if p is an equilibrium point then a solution (the solution if f is continuously differentiable) with initial condition x(0) = p is the constant solution x(t) = p.

We hope to get a qualitative sense of the solutions to our system near an equilibrium point p by replacing the system with a linear approximation:

$$x' = Jf_p$$

where Jf_p is the Jacobian matrix for f at p.

Consider the system of equations

$$x' = (x^{2} - 1)y$$
$$y' = (1 - y^{2})\left(x + \frac{3}{10}y\right).$$

So in this case $f(x,y) = ((x^2 - 1)y, (1 - y^2)(x + \frac{3}{10}y))$.

Problem 1. Find all equilibrium points for the system and plot them in the plane.

Problem 2. Compute the Jacobian matrix $Jf_{(x,y)}$ for our f at an arbitrary point (x,y).

Problem 3 For each equilibrium point p, analyze the linear system

$$\left(\begin{array}{c} x'\\ y' \end{array}\right) = Jf_p \left(\begin{array}{c} x\\ y \end{array}\right)$$

by looking at the eigenvalues of Jf_p . Do you get a saddle? A stable focus or node? An unstable focus or node? A center? (See the last page for a quick guide.)

Problem 4. What does the vector field look like along the line x = 1 and along the line x = -1? What can you say about the special behavior of solutions with an initial condition $(\pm 1, y_0)$? Interpret this geometrically.

Problem 5. What does the vector field look like along the line y = 1 and along the line y = -1? What can you say about the special behavior of solutions with an initial condition $(x_0, \pm 1)$? Interpret this geometrically.

EQUILIBRIUM POINTS FOR LINEAR SYSTEMS IN \mathbb{R}^2

Let $A \in M_2(\mathbb{R})$. Let τ be the trace of A, and let δ be the determinant of A. The characteristic polynomial for A will factor as

$$p(x) = (\lambda_1 - x)(\lambda_2 - x)$$

= $x^2 - (\lambda_1 + \lambda_2)x + \lambda_1\lambda_2$
= $x^2 - \tau x + \delta$

where λ_1 and λ_2 are the eigenvalues of A. Setting p(x) = 0 and solving gives an alternate description of the eigenvalues:

$$x = \frac{\tau \pm \sqrt{\tau^2 - 4\delta}}{2}.$$

If $\delta = 0$, then at least one of the eigenvalues is zero, and we have a **degenerate** system.

 $\delta = 0$ degenerate.

 $\delta < 0$ real eigenvalues, opposite signs \Rightarrow saddle.

 $\delta > 0, \ \tau^2 - 4\delta \ge 0$ real eigenvectors, same signs \Rightarrow node.

 $\tau < 0 \Rightarrow$ stable node

 $\tau > 0 \Rightarrow$ unstable node.

 $\delta > 0, \tau^2 - 4\delta < 0$ nonreal eigenvectors \Rightarrow swirling vector field.

 $\tau < 0 \Rightarrow$ stable focus

 $\tau > 0 \Rightarrow \text{unstable focus}$

 $\tau = 0 \Rightarrow \text{center}.$

