
Math 322 worksheet for Wednesday, Week 7

Definition. An equilibrium point for a system of differential equations in Rn

x′ = f(x)

is a point p ∈ Rn such that f(p) = 0.

The reason for the terminology is that if p is an equilibrium point then a solution
(the solution if f is continuously differentiable) with initial condition x(0) = p is the
constant solution x(t) = p.

We hope to get a qualitative sense of the solutions to our system near an equilibrium
point p by replacing the system with a linear approximation:

x′ = Jfp

where Jfp is the Jacobian matrix for f at p.

Consider the system of equations

x′ = (x2 − 1)y

y′ = (1− y2)
(
x+

3

10
y

)
.

So in this case f(x, y) = ((x2 − 1)y, (1− y2)
(
x+ 3

10
y
)
).

Problem 1. Find all equilibrium points for the system and plot them in the plane.

solution: We need to solve the system

(x2 − 1)y = 0

(1− y2)
(
x+

3

10
y

)
= 0.

The top equation is satisfied if and only if x = ±1 or y = 0. Consider these two cases
separately. If x = ±1, then the second equation is satisfied if and only if y = ±1
or y = ±10/3 (the latter depending on the sign of x). Thus, in the first case, we find
the equilibrium points

(±1,±1),

(
1,−10

3

)
,

(
−1,

10

3

)
.

Next, consider the case where y = 0. The second equation then gives x = 0. So we
get a seventh equilibrium point at the origin: (0, 0).
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Problem 2. Compute the Jacobian matrix Jf(x,y) for our f at an arbitrary point (x, y).

solution: We have

f(x, y) =

(
(x2 − 1)y, (1− y2)

(
x+

3

10
y

))
So

Jf(x,y) =

(
2xy x2 − 1

1− y2 −2y
(
x+ 3

10
y
)

+ 3
10

(1− y2)

)
.

Problem 3. For each equilibrium point p, analyze the linear system(
x′

y′

)
= Jfp

(
x
y

)
by looking at the eigenvalues of Jfp. Do you get a saddle? A stable focus or node?
An unstable focus or node? A center? (See the last page for a quick guide.)

solution:

(0, 0)

Jf(0,0) =

(
0 −1
1 3

10

)
.

The trace is τ = 3
10

and the determinant is δ = 1. So δ > 0, τ > 0, and

τ 2 − 4δ =
9

100
− 4 < 0.

This means the origin is an unstable focus. (The characteristic polynomial has two
unreal eigenvalues and the real parts of the eigenvalues are positive.)

(1, 1)

Jf(1,1) =

(
2 0
0 −13

5

)
.

The determinant is δ < 0. This means we have a saddle.

(1,−1)

Jf(1,−1) =

(
−2 0
0 7

5

)
.

The determinant is δ < 0, another saddle.
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(−1, 1)

Jf(−1,1) =

(
−2 0
0 7

5

)
.

The determinant is δ < 0, another saddle.

(−1,−1)

Jf(−1,−1) =

(
2 0
0 −13

10

)
.

The determinant is δ < 0, another saddle.(
1,−10

3

)
Jf(1,−10/3) =

(
−20

3
0

−91
9
−91

30

)
.

The determinant is δ > 0, τ < 0, and

τ 2 − 4δ =

(
−97

10

)2

− 4

(
−20

3

)(
−91

30

)
= −8153/90 < 0.

Therefore, we get a stable node: two real eigenvalues, both negative.(
−1, 10

3

)
Jf(−1,10/3) =

(
−20

3
0

−91
9
−97

30

)
,

which is the same matrix we had at (1,−10
3

). Therefore, we get another stable node:
two real eigenvalues, both negative.

Problem 4. What does the vector field look like along the line x = 1 and along
the line x = −1? What can you say about the special behavior of solutions with an
initial condition (±1, y0)? Interpret this geometrically.

solution: The vector field along the line x = 1 is

f(1, y) =

(
0, (1− y2)

(
1 +

3

10
y

))
.

The second coordinate is 0 if y = ±1 or if y = −10/3. So we have the following cases:
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y ∈ (1,∞)⇒ f(1, y)2 < 0

y ∈ (−1, 1)⇒ f(1, y)2 > 0

y ∈ (−10/3,−1)⇒ f(1, y)2 < 0

y ∈ (−∞,−10/3)⇒ f(1, y)2 > 0

(1, 1)

(1,−1)

(1,−10/3)

Trajectories starting at a point on the line x = 1 at a point below y = −10/3 or
between y = −10/3 and y = −1 get sucked into the equilibrium point (1,−10/3).
Trajectories starting at a point on the line x = 1 at a point above y = −1 get sucked
into the equilibrium point at (1, 1).

The case for x = −1 is similar. We show the picture for x = ±1 and y = ±1 in the
solution to problem 5, below.

Problem 5. What does the vector field look like along the line y = 1 and along the
line y = −1? What can you say about the special behavior of solutions with an initial
condition (x0,±1)? Interpret this geometrically.

solution:

(1, 1)

(1,−1)

(1,−10/3)

(−1, 10/3)

(−1, 1)

(−1,−1)
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Here is a picture of the vector field (normalized so that each arrow has the same
length):

Here is a picture of the flow of the vector field:

The vector fields near the equilibrium points (−1, 10/3) and (1,−10/3) both look like
this:
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The linearizations at both (−1, 10/3) and (1,−10/3) are the same:

x′ = −20

3
x

y′ = −91

9
x− 91

30
y,

and the vector field looks like:
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equilibrium points for linear systems in R2

Let A ∈ M2(R). Let τ be the trace of A, and let δ be the determinant of A. The
characteristic polynomial for A will factor as

p(x) = (λ1 − x)(λ2 − x)

= x2 − (λ1 + λ2)x+ λ1λ2

= x2 − τx+ δ

where λ1 and λ2 are the eigenvalues of A. Setting p(x) = 0 and solving gives an
alternate description of the eigenvalues:

x =
τ ±
√
τ 2 − 4δ

2
.

If δ = 0, then at least one of the eigenvalues is zero, and we have a degenerate
system.

δ = 0 degenerate.

δ < 0 real eigenvalues, opposite signs ⇒ saddle.

δ > 0, τ 2 − 4δ ≥ 0 real eigenvectors, same signs ⇒ node.

τ < 0 ⇒ stable node
τ > 0 ⇒ unstable node.

δ > 0, τ 2 − 4δ < 0 nonreal eigenvectors ⇒ swirling vector field.

τ < 0 ⇒ stable focus
τ > 0 ⇒ unstable focus
τ = 0 ⇒ center.

τ

δ

unstable
focus

stable
focus

stable
node

unstable
node

saddle
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ce
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r
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