
Math 322 lecture for Monday, Week 7

fundamental existence and uniqueness theorem

Our goal is to apply the contraction mapping principle to the operator

T : C(I)→ C(I)

u 7→ x0 +

∫ t

s=0

f(u(s)) ds

in order to prove the fundamental existence and uniqueness theorem for ordinary
differential equations.

Derivative review. Let E ⊆ Rn be an open set. Recall from vector calculus that
the derivative of a function f : E → Rn at a point p ∈ E is a linear function

Dfp : Rn → Rn

approximating f near p:
f(p+ h) ≈ f(p) +Dfp(h)

for small h. Its corresponding matrix is the Jacobian matrix for f at p, whose j-th
column is the j-th partial of f (measuring how f is changing in the j-th coordinate
direction):

∂f

∂xj
(p) =



∂f1
∂xj

(p)

∂f2
∂xj

(p)

...

∂fn
∂xj

(p)

 .

We say f : E → Rn is continuously differentiable if it is differentiable at all points
in E and the mapping

E → L(Rn)

p 7→ Dfp

is continuous.

Explanation: First, L(Rn) denotes the vector space of linear functions from Rn to
itself. Second, to talk about continuity we define a norm on L(Rn): for L ∈ L(Rn),
let

‖L‖ = max
|x|≤1
|L(x)|.
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This is the same as ‖A‖ if A is the matrix representing L. In that case, since L(x) =
Ax, the inequality |Ax| ≤ ‖A‖|x| can be written as

‖L(x)‖ ≤ ‖L‖ |x|.

A theorem from calculus says that f is continuously differentiable if and only if all
of its partials ∂fi/∂xj exist and are continuous. (Also, it turns out that continuity of
the partials guarantees that f is differentiable.)

Notation. For an open subset E ⊂ Rn, we denote the R-vector space of continuously
differentiable functions on E by C1(E).

Lipschitz condition. We now introduce a condition on vector fields that will allow
the application of the contraction mapping principle to T .

Definition. Let E ⊆ Rn be an open subset. Then a function f : E → Rn is Lipschitz
if there exists a constant K such that

|f(x)− f(y)| ≤ K|x− y|

for all x, y ∈ E. On the other hand, f is locally Lipschitz on E if for each x0 ∈ E,
there exists ε > 0 and a constant Kx0 such that

|f(x)− f(y)| ≤ Kx0|x− y|

for all
x, y ∈ Nε(x0) := {x ∈ Rn : |x− x0| < ε} .

Proposition. If f ∈ C1(E), then f is locally Lipschitz.

Proof. Let x0 ∈ E. Since E is open it contains an open ball about x0, i.e., there
exists η > 0 such that Nη(x0) ⊂ E. Define ε := η/2 and consider the closed ball

B := Bε(x0) := Nε(x0) := {x ∈ Rn : |x− x0| ≤ ε} .

Let
Kx0 := max

x∈B
‖Dfx‖.

The constant Kx0 exists since we’re assuming Df is continuous (f ∈ C1(E)). Thus,
x→ Dfx → ‖Dfx‖, being the composition of continuous functions, is also continuous.
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Since B is convex, given x, y ∈ B, the line segment joining x to y is contained
in B. Hence, it is OK to stick these points into f . Parametrize the line segment
by φ(s) = x+ s(y − x) for s ∈ [0, 1] and consider the composition

F := f ◦ φ : : [0, 1]→ Rn

s 7→ f(x+ s(y − x)),

a curve in Rn. By the chain rule,

DFs = Dfφ(s) ◦Dφs.

Since F is a curve in Rn, its Jacobian matrix at s is a single column vector—the
tangent or velocity vector F ′(s)—and

DFs(t) = tF ′(s),

a linear function of t (for fixed s). Similarly φs is a curve in Rn, so its Jacobian matrix
is its velocity at time s. It’s easy to compute: since φ(s) = x+ s(y − x), its velocity
is constant. At any time s, we have φ′(s) = y − x. Thus,

Dφs(t) = t(y − x).

By the chain rule,
tF ′(s) = DFs(t) = Dfφ(s)(t(y − x)).

Setting t = 1, we get
F ′(s) = Df(x+s(y−x))(y − x) ∈ Rn.

Since F (0) = f(x) and F (1) = f(y),

|f(y)− f(x)| = |F (1)− F (0)|

=

∣∣∣∣∫ 1

s=0

F ′(s) ds

∣∣∣∣
≤
∫ 1

s=0

|F ′(s)| ds

=

∫ 1

s=0

|Df(x+s(y−x))(y − x)| ds

≤
∫ 1

s=0

‖Df(x+ s(y − x))‖ |y − x| ds

≤ Kx0

∫ 1

s=0

|y − x| ds

= Kx0|y − x|.

We’ve shown that f is locally Lipschitz.
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Theorem. (The fundamental existence and uniqueness theorem for non-
linear systems.) Let E be an open subset of Rn containing x0, and let f ∈ C1(E).
Then there exists a > 0 such that the initial value problem

x′ = f(x)

x(0) = x0

has a unique solution x(t) on [−a, a].

Proof. Since f ∈ C1(E), there exists an ε > 0 such that Nε(x0) ⊆ E, the open ball
of radius ε centered at x0, and there exists a constant Kx0 such that

|f(x)− f(y)| ≤ Kx0|x− y|

for all x, y in Nε(x0). By replacing ε by ε/2, we may assume

|f(x)− f(y)| ≤ Kx0|x− y|

for all x, y in
B := Nε(x0) := {x ∈ Rn : |x− x0| ≤ ε} ⊂ E.

(The point here is to get the Lipschitz condition to hold on a closed bounded ball
rather then on the open ball, Nε(x0), in preparation for an application of the extreme
value theorem, below.)

Let I = [−a, a] where a > 0 is a constant to be determined later, and define

X := {u ∈ C(I) : ‖u− x0‖ ≤ ε} ,

considering x0 ∈ C(I) as the constant function t 7→ x0 for all t ∈ I. This means that
for u ∈ X, we have

max
t∈I
|u(t)− x0| ≤ ε.

In particular, u(t) ∈ B ⊂ E for all t ∈ I. Note that B is a subset of E ⊆ Rn and X
is a subset of the function space C(I) of continuous functions I → Rn. If u ∈ X,
then u(t) ∈ B for all t ∈ I.

Our goal is to show that a can be taken small enough so that (i) T (u) ∈ X for
all u ∈ X, i.e., so that T : X → X, and so that (ii) T : X → X is a contraction
mapping.

For (i), since B is closed and bounded, we can define

M = max
x∈B
|f(x)|.
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Suppose that 0 < a < ε
M

. Then for u ∈ X and t ∈ I,

|T (u)(t)− x0| =
∣∣∣∣(x0 +

∫ t

s=0

f(u(s)) ds

)
− x0

∣∣∣∣
=

∣∣∣∣∫ t

s=0

f(u(s)) ds

∣∣∣∣
≤
∣∣∣∣∫ t

s=0

|f(u(s))| ds
∣∣∣∣ .

If s is in the interval between 0 and t and u ∈ X, it follows that u(s) ∈ B, and
hence, |f(u(s))| ≤M . Therefore, continuing our calculation,

|T (u)(t)− x0| =
∣∣∣∣∫ t

s=0

|f(u(s))| ds
∣∣∣∣

=

∣∣∣∣∫ t

s=0

M ds

∣∣∣∣
= |t|M

≤ aM

<
ε

M
M

< ε.

Hence,
‖T (u)− x0‖ := max

t∈I
|T (u)(t)− x0| < ε.

Therefore T (u) ∈ X. In sum: if 0 < a < ε/M , then T : X → X.

We now work on (ii): we can take a small enough so that T : X → X is a contraction
mapping. Let u, v ∈ X. Then, using the Lipschitz property,

|T (u)− T (v)| =
∣∣∣∣∫ t

s=0

f(u(s))− f(v(s)) ds

∣∣∣∣
≤
∣∣∣∣∫ t

s=0

|f(u(s))− f(v(s))| ds
∣∣∣∣
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≤ Kx0

∣∣∣∣∫ t

s=0

|u(s)− v(s)| ds
∣∣∣∣

≤ Kx0

∣∣∣∣∫ t

s=0

max
c∈I
|u(c)− v(c)| ds

∣∣∣∣
= Kx0

∣∣∣∣∫ t

s=0

‖u− v‖ ds
∣∣∣∣

= Kx0 |t| ‖u− v‖

≤ aKx0‖u− v‖.

To ensure T is a contraction mapping, take a = 1
2Kx0

(so that aKx0 = 1
2
< 1).

In total, we have now shown there exists and interval I = [−a, a], a closed ball X ⊂
C(I) centered at the constant function x0, such that T : X → X and T is a contraction
mapping. It therefore has a unique fixed point x ∈ X. So x = T (x), i.e.,

x(t) = T (x)(t) := x0 +

∫ t

s=0

f(x(s)) ds.

By the fundamental theorem of calculus and the fact that x(0) = x0, it follows that x
is a solution to the initial value problem

x′ = f(x)

x(0) = x0

on I. For uniqueness, recall that any solution x on I will be a fixed point for T :

T ′(x)(t) =

(
x0 +

∫ t

s=0

f(x(s)) ds

)′
= f(x(t)) = x′(t).

so T (x) and x differ by a constant. However T (x(0)) = x0 = x(0), so that constant
is 0. Since every solution is a fixed point of T and contraction mappings have unique
fixed points, we are done.
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