Math 322 lecture for Monday, Week 7

FUNDAMENTAL EXISTENCE AND UNIQUENESS THEOREM

Our goal is to apply the contraction mapping principle to the operator
T:C(I)— C(I)
t
u = xo + / f(u(s))ds
s=0

in order to prove the fundamental existence and uniqueness theorem for ordinary
differential equations.

Derivative review. Let £ C R"™ be an open set. Recall from vector calculus that
the derivative of a function f: E — R™ at a point p € E is a linear function

Df,: R* » R"

approximating f near p:
fp+h) = f(p) + Dfp(h)

for small h. Its corresponding matrix is the Jacobian matrix for f at p, whose j-th
column is the j-th partial of f (measuring how f is changing in the j-th coordinate
direction):

o (p)
of B ngj (p)
8_:153- () =

a2 (p)

We say f: EE — R" is continuously differentiable if it is differentiable at all points
in £/ and the mapping

1s continuous.

Explanation: First, £(R") denotes the vector space of linear functions from R™ to
itself. Second, to talk about continuity we define a norm on £(R"): for L € L(R"),
let

IL]] = max[L(z)].

j@|<1
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This is the same as ||A]| if A is the matrix representing L. In that case, since L(z) =
Az, the inequality |Az| < ||Al||z| can be written as

IL(@)|| < || L]l ]=]-

A theorem from calculus says that f is continuously differentiable if and only if all
of its partials 0f;/0z; exist and are continuous. (Also, it turns out that continuity of
the partials guarantees that f is differentiable.)

Notation. For an open subset F C R", we denote the R-vector space of continuously
differentiable functions on E by C'(E).

Lipschitz condition. We now introduce a condition on vector fields that will allow
the application of the contraction mapping principle to 7.

Definition. Let £ C R" be an open subset. Then a function f: E — R" is Lipschitz
if there exists a constant K such that

[f(2) = F(y)] < Kz —y]

for all z,y € E. On the other hand, f is locally Lipschitz on E if for each zq € F,
there exists € > 0 and a constant K, such that

[f(2) = F(y)] < Kol =y

for all
z,y € N(xp) :={z € R" : |x — x| < €}.

Proposition. If f € C'(F), then f is locally Lipschitz.

Proof. Let xo € E. Since E is open it contains an open ball about z, i.e., there
exists 7 > 0 such that N, (x¢) C E. Define € := /2 and consider the closed ball

B := B.(xg) := N.(xg) :={x € R" : |z — xo| < &}

Let
Ky := max [[Df].

The constant K, exists since we’re assuming D f is continuous (f € C'(FE)). Thus,
x — Df, — ||Df.||, being the composition of continuous functions, is also continuous.



Since B is convex, given x,y € B, the line segment joining z to y is contained
in B. Hence, it is OK to stick these points into f. Parametrize the line segment
by ¢(s) =x + s(y — x) for s € [0,1] and consider the composition

F:=fo¢::[0,1] > R"
s [z +s(y — ),
a curve in R™. By the chain rule,
DFs = Dfys) 0 Dos.

Since F'is a curve in R", its Jacobian matrix at s is a single column vector—the
tangent or velocity vector F'(s)—and

DF,(t) =tF'(s),

a linear function of ¢ (for fixed s). Similarly ¢, is a curve in R™, so its Jacobian matrix
is its velocity at time s. It’s easy to compute: since ¢(s) = = + s(y — x), its velocity
is constant. At any time s, we have ¢/(s) = y — z. Thus,

Doy(t) = t(y — x).
By the chain rule,
tF'(s) = DF(t) = D fs) (t(y — 2)).

Setting t = 1, we get
F/(S) = Df(x—i-S(y—ﬂ:))(y - :L') € R

Since F(0) = f(z) and F(1) = f(y),
|f(y) = f(z)] = [F(1) — F(0)]

/;0 F'(s)ds

1
< [ Felds
s=0
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0
s=0

= Io|y_$|'

We’ve shown that f is locally Lipschitz. O



Theorem. (The fundamental existence and uniqueness theorem for non-
linear systems.) Let £ be an open subset of R" containing zg, and let f € C'(F).
Then there exists a > 0 such that the initial value problem

' = f(x)
z(0) = xg

has a unique solution z(t) on [—a, a].

Proof. Since f € C'(E), there exists an € > 0 such that N.(zy) C E, the open ball
of radius € centered at xy, and there exists a constant K, such that

[f(2) = F(y)] < Kaplz =y

for all z,y in N.(z¢). By replacing € by £/2, we may assume

[f(2) = f(y)] < Kaplz =y

for all z,y in

B:= N.(zp) :={z € R": |x —x¢| < e} C E.

(The point here is to get the Lipschitz condition to hold on a closed bounded ball
rather then on the open ball, N.(zy), in preparation for an application of the extreme
value theorem, below.)

Let I = [—a,a] where a > 0 is a constant to be determined later, and define
X ={ueC): ||lu—=x <ce},

considering zg € C'(I) as the constant function ¢ — z¢ for all ¢ € I. This means that
for u € X, we have

— 70l < e
Irtl€aIX|u(t) zo| < e

In particular, u(t) € B C E for all t € I. Note that B is a subset of £ C R" and X
is a subset of the function space C(I) of continuous functions I — R". If u € X,
then u(t) € B for all t € I.

Our goal is to show that a can be taken small enough so that (i) T'(u) € X for
all uw € X, ie., so that T: X — X, and so that (ii) 7: X — X is a contraction
mapping.

For (i), since B is closed and bounded, we can define

M = max | f(z)].
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Suppose that 0 < a < 7. Then for u € X and ¢ € I,

@0 -0l = | (20 + | (s ds) = a4

-| [ st

<| [ ity s

If s is in the interval between 0 and ¢ and u € X, it follows that u(s) € B, and
hence, |f(u(s))| < M. Therefore, continuing our calculation,

PO =l = | [ 1) ds

t
= / M ds
s=0

= |t| M

<aM

< €.

Hence,
I1T'(w) = 2ol := max |T'(u)(t) - zo| <e.
Therefore T'(u) € X. In sum: if 0 < a <e/M, then T: X — X.

We now work on (ii): we can take a small enough so that 7': X — X is a contraction
mapping. Let u,v € X. Then, using the Lipschitz property,

T =T = | [ fus) = fos) ds

<

[ 1) = s ds




< K| [ fute) = ol s

t

< K,, . max lu(c) — v(c)| ds

t
:Kxo/ lu = v]| ds
s=0

= Ko [t] lu = v]]

< aKyllu —v]|.

To ensure T is a contraction mapping, take a = 2& (so that aK,, = % <1).
o
In total, we have now shown there exists and interval I = [—a, a], a closed ball X C

C'(I) centered at the constant function xg, such that 7: X — X and T is a contraction
mapping. It therefore has a unique fixed point z € X. So z = T'(z), i.e.,

z(t) =T (z)(t) := xo + /:0 f(x(s))ds.

By the fundamental theorem of calculus and the fact that x(0) = g, it follows that x
is a solution to the initial value problem

o' = f(x)
x(0) =z

on I. For uniqueness, recall that any solution x on I will be a fixed point for 7"
t /
T'(x)(t) = (x0+/ f(x(S))dS> = fla(t)) = 2'(1).
s=0
so T'(z) and x differ by a constant. However T'(z(0)) = xy = x(0), so that constant

is 0. Since every solution is a fixed point of 7" and contraction mappings have unique
fixed points, we are done. ]



