
Math 322 lecture for Wednesday, Week 6

nonlinear systems

Let E ⊆ Rn be an open subset of Rn and let C(E) denote the vector space of
continuous functions of the form E → Rn. Given f ∈ C(E), we are now interested in
solutions to the differential equation

x′ = f(x). (1)

The function f is a vector field in Rn defined on E. We have just finished studying
the linear case of this problem, i.e., in which f(x) = Ax for some A ∈ Mn(Rn) and
are now particularly interested in the case where f is no longer a linear function.

A solution to equation (1) on an interval I is a function x : I → E ⊆ Rn such that

x′(t) = f(x(t))

for all t ∈ I. Given t0 ∈ I with x(t0) = x0 ∈ E, we say the solution satisfies the
initial value problem

x′ = f(x)

x(t0) = x0

on I.

Example. Consider the (non-linear) system

x′ = x2 − y

y′ = xy

with initial value (x(0), y(0)) = (0.5, 1). So in this case, the relevant vector field is
f(x, y) = (x2− y, xy). Here is a plot of the vector field and the solution to the initial
value problem:
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Note that this system displays behavior one would not see in the linear case.

The systems we are studying are called autonomous since f is a function of x ∈ Rn

and not t. However, a nonautonomous system

x′ = g(x, t)

can be converted to an autonomous system by letting xn+1 := t and x′n+1 = 1.

Goals. Our first main goal is to find conditions under which the initial value problem
for equation (1) has a unique solution. After that, we’ll discuss how solutions change
if f changes a small amount and discuss the size of the interval on which a solution
exists.

New behavior. In the linear case, x′ = Ax and x(0) = x0, we saw that there is
always a unique solution. That’s no longer generally true in the nonlinear case. For
instance, the following initial value problem

x′ = 3x2/3

x(0) = 0

has two solutions: x(t) = 0 and x(t) = t3. We’ll see that the source of non-uniqueness
here is that f(x) = 3x2/3 is not continuously differentiable: f ′(x) = 2x−1/3, which is
not continuous at 0.

Even if f ′ is continuous everywhere, the solution may only exist on subintervals of
the real line, again unlike the linear situation. For example, consider the system

x′ = x2

x(0) = 1.

The solution is

x(t) =
1

1− t

but is only defined on the interval (−∞, 1). The solution blows up as t→ 1−.

Key idea. We have solved the initial value problem for equation (1) if we can find
a continuous function x(t) satisfying

x(t) = x0 +

∫ t

s=0

f(x(s)) ds

for all t ∈ [−a, a] for some a > 0.
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Check: First, by the fundamental theorem of calculus

x′(t) = (x0)
′ +

(∫ t

s=0

f(x(s)) ds

)′
= 0 + f(x(t)) = f(x(t)).

Next,

x(0) = x0 +

∫ 0

s=0

f(x(s)) ds = x0.

The method of successive approximations attempts to create a sequence of func-
tions (uk(t))k≥0 converging to a solution:

u0(t) := x0

uk+1(t) := x0 +

∫ t

s=0

f(uk(s)) ds, for k ≥ 0.

Example. Consider the initial value problem

x′ = xt, x(0) = 1.

This is an autonomous equation, so we first convert it to a nonautonomous system
by letting x1 = x and x2 = t. The system becomes(

x′1
x′2

)
=

(
x1x2

1

)
=: f(x1, x2)

with initial condition x1(0) = x(0) = 1 and x2(0) = 0 (since x2 = t).

Apply the method of successive approximations starting with

u0(t) =

(
x1(0)
x2(0)

)
=

(
1
0

)
.

We get

u1(t) =

(
1
0

)
+

∫ t

s=0

f(u0(s)) ds

=

(
1
0

)
+

∫ t

s=0

(
0
1

)
ds

=

(
1
0

)
+

(
c
s

)∣∣∣∣t
s=0

=

(
1
0

)
+

(
0
t

)
=

(
1
t

)
.
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Next,

u2(t) =

(
1
0

)
+

∫ t

s=0

f(u1(s)) ds

=

(
1
0

)
+

∫ t

s=0

f(1, s) ds

=

(
1
0

)
+

∫ t

s=0

(
s
1

)
ds

=

(
1
0

)
+

(
s2/2
s

)∣∣∣∣t
s=0

=

(
1 + t2/2

t

)
.

Next,

u3(t) =

(
1
0

)
+

∫ t

s=0

f(u2(s)) ds

=

(
1
0

)
+

∫ t

s=0

f(1 + s2/2, s) ds

=

(
1
0

)
+

∫ t

s=0

(
s + s3/2

1

)
ds

=

(
1
0

)
+

(
s2/2 + s2/(2 · 4)

s

)∣∣∣∣t
s=0

=

(
1 + t2/2 + t4/(2 · 4)

t

)
.

Similarly,

u4 =

(
1 + t2/2 + t4/(2 · 4) + t6/(2 · 4 · 6)

t

)
,

and so on. Recall that x1 = x, and x is the function we are trying to find. Thus, we
are interested in the limit of the first components of the uk. The method of successive

4



approximations is delivering

x(t) = 1 +
t2

2
+

t4

2 · 4
+

t6

2 · 4 · 6
+

t8

2 · 4 · 6 · 8
+ . . .

= 1 +
t2

2
+

t4

(1 · 2)22
+

t6

(1 · 2 · 3)23
+

t8

(1 · 2 · 3 · 4)23
+ . . .

= 1 +
t2

2
+

1

2!

(
t2

2

)2

+
1

3!

(
t2

2

)3

+
1

4!

(
t2

2

)4

+ . . .

= et
2/2,

which converges, and it’s easy to check that it satisfies the original initial value prob-
lem:

x′(t) =
(
et

2/2
)′

= tet
2/2 = x(t)t,

and x(0) = 1.

Of course, we could have solved the equation through separation of variables:

x′ = xt ⇒
∫

dx

x
=

∫
t dt ⇒ ln(x) = t2/2 + c.

Then x(0) = 1 implies c = 0. Exponentiate:

ln(x) = t2/2 ⇒ x = et
2/2.

Fixed points. Consider the operator on functions, u→ T (u) given by

T (u)(t) := x0 +

∫ t

s=0

f(u(s)) ds

In the case we just considered, with x0 = (1, 0) and f(x1, x2) = (x1x2, 1), the method
of successive iterations produced the function u(t) = (et

2/2, t). This function u is a
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fixed point for the operator T :

T (u(t)) =

(
1
0

)
+

∫ t

s=0

f(u(s)) ds

=

(
1
0

)
+

∫ t

s=0

f(es
2/2, s) ds

=

(
1
0

)
+

∫ t

s=0

(
ses

2/2

1

)
ds

=

(
1
0

)
+

(
es

2/2

s

)∣∣∣∣t
s=0

=

(
1
0

)
+

(
et

2/2 − 1
t

)

=

(
et

2/2

t

)
= u(t).

Next step. We have seen that the method of successive approximations amounts to
iterating a operator on a space of functions and converging to a fixed point for that
operator. Our next step is to consider this situation a little more generally. Let X be
a space in which convergence makes sense, and consider a mapping T : X → X. We
would like to know conditions under which iterates of a point x0 ∈ X under T will
converge to a point x̃ ∈ X that is fixed under T , i.e., such that T (x̃) = x̃.
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