Math 322 lecture for Wednesday, Week 6
NONLINEAR SYSTEMS

Let E C R"™ be an open subset of R" and let C(E) denote the vector space of
continuous functions of the form £ — R"™. Given f € C(E), we are now interested in
solutions to the differential equation

v = f(2) 1)

The function f is a vector field in R™ defined on E. We have just finished studying
the linear case of this problem, i.e., in which f(x) = Az for some A € M, (R™) and
are now particularly interested in the case where f is no longer a linear function.

A solution to equation (1) on an interval [ is a function z: I — E C R" such that

'(t) = f(x(t))

for all t € I. Given ty € I with z(ty) = xo € E, we say the solution satisfies the
initial value problem

o' = f(z)
x(tg) = o
on [.
Example. Consider the (non-linear) system
=1 —y
y =y

with initial value (z(0),y(0)) = (0.5,1). So in this case, the relevant vector field is

f(z,y) = (2? —y, zy). Here is a plot of the vector field and the solution to the initial
value problem:
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Note that this system displays behavior one would not see in the linear case.

The systems we are studying are called autonomous since f is a function of x € R"
and not t. However, a nonautonomous system

a' = g(xa t)
can be converted to an autonomous system by letting x, 4, :=t and ], ; = 1.

Goals. Our first main goal is to find conditions under which the initial value problem
for equation (1) has a unique solution. After that, we’ll discuss how solutions change
if f changes a small amount and discuss the size of the interval on which a solution
exists.

New behavior. In the linear case, 2’ = Az and 2(0) = zy, we saw that there is
always a unique solution. That’s no longer generally true in the nonlinear case. For
instance, the following initial value problem
¢’ = 32%3
z(0) =0

has two solutions: z(t) = 0 and z(t) = ¢3. We’ll see that the source of non-uniqueness
here is that f(z) = 32%/3 is not continuously differentiable: f’(x) = 22~/3, which is
not continuous at 0.

Even if f’ is continuous everywhere, the solution may only exist on subintervals of
the real line, again unlike the linear situation. For example, consider the system

/
1]:1’2

z(0) = 1.
The solution is )

)= ——
2(t) = 71—
but is only defined on the interval (—oo, 1). The solution blows up ast — 1-.

Key idea. We have solved the initial value problem for equation (1) if we can find
a continuous function x(t) satisfying

x(t) = xo + /:0 f(z(s))ds

for all t € [—a, a] for some a > 0.



Check: First, by the fundamental theorem of calculus

(1) = (o) + ( [ ) ds) 04 f(e(t) = F(a(t)).
Next, .
z(0) =z + ., f(z(s))ds = xy.

The method of successive approximations attempts to create a sequence of func-
tions (ux())k>0 converging to a solution:

u(t) := xo

U1 (t) = x0 + /t f(uk(s))ds, for k>0.
s=0

Example. Consider the initial value problem
' =uxt, x(0)=1

This is an autonomous equation, so we first convert it to a nonautonomous system
by letting z; = x and z = t. The system becomes

(3) = (") = slenny

with initial condition z1(0) = 2(0) = 1 and x2(0) = 0 (since x5 = ).

Apply the method of successive approximations starting with

w0=(20) = ()

We get




Next,

()
Next,
wit = (3)+ [ fuatsnas
_ ( : ) + ;Of(1+s2/2,s)ds
(o) L)
:(g)+(fm+fmza>t
:(1+t2/24;t4/(2'4)). _
Similarly,

s — ( 1+t2/2+t4/(2.4)+t6/(2-4-6))
4 — t )

and so on. Recall that 1 = z, and x is the function we are trying to find. Thus, we
are interested in the limit of the first components of the u,. The method of successive



approximations is delivering
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which converges, and it’s easy to check that it satisfies the original initial value prob-
lem:

/
2 (t) = <et2/2> = te!’/? = z(t)t,

and z(0) = 1.

Of course, we could have solved the equation through separation of variables:

d
¥ =at = /—zz/tdt = In(x)=t*/2+ec
T
Then 2(0) = 1 implies ¢ = 0. Exponentiate:

In(z) =12/2 = xz=¢""2

Fixed points. Consider the operator on functions, u — T'(u) given by

T(u)(t) := xo + /:0 fu(s))ds

In the case we just considered, with zy = (1,0) and f(x,z2) = (2122, 1), the method
of successive iterations produced the function u(t) = (¢*’/2,t). This function u is a



fixed point for the operator T
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Next step. We have seen that the method of successive approximations amounts to
iterating a operator on a space of functions and converging to a fixed point for that
operator. Our next step is to consider this situation a little more generally. Let X be
a space in which convergence makes sense, and consider a mapping 7": X — X. We
would like to know conditions under which iterates of a point o € X under T will
converge to a point & € X that is fixed under T, i.e., such that T'(Z) = Z.



