Math 322 lecture for Monday, Week 6

n-TH ORDER LINEAR HOMOGENEOUS EQUATIONS REVISITED

Consider the homogeneous linear equation
Y™+ an oy @y 4 agy =0 (1)

with initial condition y(0) = b; for i = 0,1, ...,n— 1. Recall the method of solution
introduced during the first two weeks of class. First we factor the characteristic

polynomial
k

P(z) = [J(x = )™,

i=1
where the \; are distinct. We claimed that the most general solution was an arbitrary
linear combination of the basic functions

Mt getit L gl

forv =1,...,k. We also claimed that for each initial condition, there would be a
unique solution. We now want to justify those claims.

Define
I i=Y, T2 = y/7 T3 = y//7 cee oy Ip i = y(nil)‘

We get a corresponding matrix equation

!

Ty 0 1 T
/

T 0 1 O T2
/

T . O 0 1 T3
/

Ty g 0 1 Tn—1
!

Ty, —Qp —ai; —Aaz ... —Qp—2 —Ap_1 Tn

Let A denote the nxn matrix above, and we can consider the differential equation z’ =
Az with initial condition zo = x(0) = (y(0),%'(0),...,y™1(0)) = (bo,b1,...,bp_1).
The solution is

z(t) = e,

and the first component of this solution is x(t) = y(¢), the solution to the original
homogeneous system.



Proposition. Let P(z) = > ja;z" be the characteristic polynomial for the linear
homogeneous equation (1). Then the characteristic polynomial for A is

pa(r) :=det(A — z1,,) = (=1)"" P(x).

Proof. We have

—x 1
—T 1
Az, A - %
— 7 n — O
—x 1
—Qp —a; —Qa ... —Ap—2 —TL — Ap—1

Multiply the second column by z and add it to the first column; then multiply the
third column by 22 and add it to the first column; and so on. This does not affect the
determinant, and the rows of the first column are all 0 now except the last, which is

—ap — 1T — AT — -+ — o™ — (T + ap_y)2" ! = —P(2).

It follows that

0 1
0 — 1
det(A — zI,,) = det O O ! O
0 J— 1
—P(x) —a1 —ay ... —Qu2 —Qu1—T
Expand along the first column to get the result. O

In order to solve the system, we are interested in the Jordan form for A. So we think
about this next.

Proposition. Let A be an eigenvalue for A. Then the corresponding eigenspace is
Ey = Span{(1,\,\?, ..., A" 1)}

and is, hence, one-dimensional. So the geometric multiplicity of each eigenvalue for A
is 1.



Proof. Suppose that Av = Av where v = (vq,...,v,). Note that

0 1 U1 V1
0 1 (%) (%]
0 1 (% U3
Av = ) ) ) =)\ ) = \v
0 1 Un—1 Un—1
—Qap —a; —Q ... —Ap—92 —Aap_1 Un Un,
says vo = A\vy, U3 = Mg, ... , Uy = AU,_1. Thus,
_ ( A )\2 )\nfl )
UV = U1, AU, A VU1,y..., (%]

=0y (1,0 A2, A0,

O
Corollary. Suppose that A has distinct eigenvalues Ay, ..., A; (over C) with algebraic
multiplicities, my, ..., my, respectively, so the its characteristic polynomial is
k

pa() = [ — )™

i=1

Then the Jordan form for A is

‘]ml ()‘1)
I 0

0 T

Proof. This follows immediately from the preceding Proposition. The diagonal of the
Jordan form consists of the eigenvalues of A, repeated according to multiplicities. For
each Jordan block, there is a corresponding eigenvector for A (and several generalized
eigenvectors). If there where more than one Jordan block for a particular eigenvalue A,
there would be more than one linearly independent eigenvector for A\, and we’ve just
seen that this cannot happen—each eigenspace has dimension 1. O

Theorem. Suppose the roots for the characteristic polynomial for equation (1) or,
equivalently, the eigenvalues for A are Aq,..., A\, with multiplicities mq, ..., ms, re-
spectively. Every solution to equation (1) (with a given initial condition) is a unique
linear combination of the basic functions

{theMt 10 < j<m;1<i<k}, (2)

3



and each linear combination of these functions is a solution for some initial condition.

Proof. There are three parts to this proof: (i) show each solution is a linear com-
bination of the basic functions; (ii) show each basic function satisfies the differential
equation (1); and (iii) show the basic equations are linearly independent.

(i) The solution to equation (1) is the first component of etz Letting P1AP = J
be the Jordan form for A, the solution is

y(t) = eMtay = Pe?' P71,

and hence, is a linear combination of the entries of e’!. The result then follows from
the previous corollary recalling that

t2 tmi71
Lt o (mi—1)!
k—2
01t o]
o0 1 .. .. A=
ejmi()\it) — it (m;—3)!
0 0 t
0 1

(ii) Consider the differential operator D := %. We can write equation (1) as
P(D)y =0

where P(D) = 2" + ap,—12" ' + - -+ + a1z + ap. We are given that

k

P(D) =[]® - )™

=1

That the basic functions satisfy the differential equation P(D)y = 0 is left as home-
work. It follows from two facts (which are part of the homework problem):

(a) (D —a)(D—pB)f(t) = (D — B)(D — «a)f(t) for every sufficiently differentiable

function f(¢) and pair of constants o and /.

(b) P(D)(f(t)eM) = eMP(D + M) (f(t)) for every sufficiently differentiable func-
tion f(¢) and constant A.



(iii) For uniqueness, list the n functions in (2) in some order fi, ..., f,, and consider
the mapping ¢: C" — C" defined as follows: for each (ay,...,a,) € C", consider the
solution

Sa(t> =ayfi+ ... anfn,

and let
dlay, ..., an) = (54(0),5,(0),...,s"7D(0)) e C".

Eiae%

Since taking differentiation and evaluation are both linear operations, ¢ is linear.
It is surjective since we know from part (ii) that we can find a solution as a linear
combination of fi,..., f, for each initial condition. Since ¢ is linear and has rank 4,
i.e., dim(im ¢) = 4, the rank-nullity theorem says that the kernel of ¢ is trivial. So ¢
is injective. Now take any two solutions that satisfy the same initial conditions. Each
of these solutions is a linear combination of the basic functions, so they have the
form s, and sg for some «, 8 € C". Since they satisfy the same initial condition, we
have ¢(a)) = ¢(f). Since ¢ is injective, we have o = f.



