Math 322 lecture for Monday, Week 6

n-TH ORDER LINEAR HOMOGENEOUS EQUATIONS REVISITED

Consider the homogeneous linear equation

$$y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_1y' + a_0y = 0$$
(1)

with initial condition $y^{(i)}(0) = b_i$ for i = 0, 1, ..., n-1. Recall the method of solution introduced during the first two weeks of class. First we factor the characteristic polynomial

$$P(x) = \prod_{i=1}^{k} (x - \lambda_i)^{m_i},$$

where the λ_i are distinct. We claimed that the most general solution was an arbitrary linear combination of the basic functions

$$e^{\lambda_i t}, t e^{\lambda_i t}, \ldots, t^{m_i - 1} e^{\lambda_i t}$$

for i = 1, ..., k. We also claimed that for each initial condition, there would be a unique solution. We now want to justify those claims.

Define

$$x_1 := y, \ x_2 := y', \ x_3 := y'', \ \dots, \ x_n := y^{(n-1)}$$

We get a corresponding matrix equation

$$\begin{pmatrix} x_1' \\ x_2' \\ x_3' \\ \vdots \\ x_{n-1}' \\ x_n' \end{pmatrix} = \begin{pmatrix} 0 & 1 & & & \\ 0 & 1 & & 0 \\ 0 & 0 & 1 & & \\ 0 & & \ddots & \ddots & & \\ & & 0 & 1 \\ -a_0 & -a_1 & -a_2 & \dots & -a_{n-2} & -a_{n-1} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_{n-1} \\ x_n \end{pmatrix}.$$

Let A denote the $n \times n$ matrix above, and we can consider the differential equation x' = Ax with initial condition $x_0 = x(0) = (y(0), y'(0), \dots, y^{(n-1)}(0)) = (b_0, b_1, \dots, b_{n-1})$. The solution is

$$x(t) = e^{At} x_0,$$

and the first component of this solution is $x_1(t) = y(t)$, the solution to the original homogeneous system.

Proposition. Let $P(x) = \sum_{i=0}^{n} a_i x^i$ be the characteristic polynomial for the linear homogeneous equation (1). Then the characteristic polynomial for A is

$$p_A(x) := \det(A - xI_n) = (-1)^{n+1}P(x).$$

Proof. We have

$$A - xI_n A = \begin{pmatrix} -x & 1 & & & \\ & -x & 1 & & 0 \\ 0 & & -x & 1 & 0 \\ 0 & & \ddots & \ddots & \\ & & & -x & 1 \\ -a_0 & -a_1 & -a_2 & \dots & -a_{n-2} & -x - a_{n-1} \end{pmatrix}$$

Multiply the second column by x and add it to the first column; then multiply the third column by x^2 and add it to the first column; and so on. This does not affect the determinant, and the rows of the first column are all 0 now except the last, which is

$$-a_0 - a_1 x - a_2 x^2 - \dots - a_{n-2} x^{n-2} - (x + a_{n-1}) x^{n-1} = -P(x).$$

It follows that

$$\det(A - xI_n) = \det \begin{pmatrix} 0 & 1 & & & \\ 0 & -x & 1 & & 0 \\ 0 & & -x & 1 & & 0 \\ \vdots & 0 & \ddots & \ddots & & \\ 0 & & & -x & 1 \\ -P(x) & -a_1 & -a_2 & \dots & -a_{n-2} & -a_{n-1} - x \end{pmatrix}$$

Expand along the first column to get the result.

In order to solve the system, we are interested in the Jordan form for A. So we think about this next.

Proposition. Let λ be an eigenvalue for A. Then the corresponding eigenspace is

$$E_{\lambda} = \operatorname{Span}\{(1, \lambda, \lambda^2, \dots, \lambda^{n-1})\}$$

and is, hence, one-dimensional. So the geometric multiplicity of each eigenvalue for A is 1.

Proof. Suppose that $Av = \lambda v$ where $v = (v_1, \ldots, v_n)$. Note that

$$Av = \begin{pmatrix} 0 & 1 \\ 0 & 1 \\ & 0 & 1 \\ & & \ddots & \ddots \\ & & 0 & 1 \\ -a_0 & -a_1 & -a_2 & \dots & -a_{n-2} & -a_{n-1} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \\ \vdots \\ v_{n-1} \\ v_n \end{pmatrix} = \lambda \begin{pmatrix} v_1 \\ v_2 \\ v_3 \\ \vdots \\ v_{n-1} \\ v_n \end{pmatrix} = \lambda v$$

says $v_2 = \lambda v_1, v_3 = \lambda v_2, \dots, v_n = \lambda v_{n-1}$. Thus,
 $v = (v_1, \lambda v_1, \lambda^2 v_1, \dots, \lambda^{n-1} v_1)$
 $= v_1(1, \lambda, \lambda^2, \dots, \lambda^{n-1}).$

Corollary. Suppose that A has distinct eigenvalues $\lambda_1, \ldots, \lambda_k$ (over \mathbb{C}) with algebraic multiplicities, m_1, \ldots, m_k , respectively, so the its characteristic polynomial is

$$p_A(x) = \prod_{i=1}^k (\lambda_i - x)^{m_i}.$$

Then the Jordan form for A is

$$\left(egin{array}{ccc} J_{m_1}(\lambda_1) & & & & \ & & J_{m_2}(\lambda_2) & & 0 \ & & \ddots & & \ & & & & J_{m_k}(\lambda_k) \end{array}
ight).$$

Proof. This follows immediately from the preceding Proposition. The diagonal of the Jordan form consists of the eigenvalues of A, repeated according to multiplicities. For each Jordan block, there is a corresponding eigenvector for A (and several generalized eigenvectors). If there where more than one Jordan block for a particular eigenvalue λ , there would be more than one linearly independent eigenvector for λ , and we've just seen that this cannot happen—each eigenspace has dimension 1.

Theorem. Suppose the roots for the characteristic polynomial for equation (1) or, equivalently, the eigenvalues for A are $\lambda_1, \ldots, \lambda_k$ with multiplicities m_1, \ldots, m_k , respectively. Every solution to equation (1) (with a given initial condition) is a unique linear combination of the *basic functions*

$$\{t^{j}e^{\lambda_{i}t}: 0 \le j < m_{i}, 1 \le i \le k\},$$
(2)

and each linear combination of these functions is a solution for some initial condition.

Proof. There are three parts to this proof: (i) show each solution is a linear combination of the basic functions; (ii) show each basic function satisfies the differential equation (1); and (iii) show the basic equations are linearly independent.

(i) The solution to equation (1) is the first component of $e^{At}x_0$. Letting $P^{-1}AP = J$ be the Jordan form for A, the solution is

$$y(t) = e^{At} x_0 = P e^{Jt} P^{-1},$$

and hence, is a linear combination of the entries of e^{Jt} . The result then follows from the previous corollary recalling that

$$e^{J_{m_i}(\lambda_i t)} = e^{\lambda_i t} \begin{pmatrix} 1 & t & \frac{t^2}{2!} & \dots & \dots & \frac{t^{m_i - 1}}{(m_i - 1)!} \\ 0 & 1 & t & \dots & \dots & \frac{t^{k-2}}{(m_i - 2)!} \\ 0 & 0 & 1 & \dots & \dots & \frac{t^{k-3}}{(m_i - 3)!} \\ & \ddots & \vdots & \vdots & \vdots \\ 0 & \dots & \dots & 0 & 1 & t \\ 0 & \dots & \dots & 0 & 1 \end{pmatrix}$$

(ii) Consider the differential operator $D := \frac{d}{dt}$. We can write equation (1) as

$$P(D)y = 0$$

where $P(D) = x^n + a_{n-1}x^{n-1} + \dots + a_1x + a_0$. We are given that

$$P(D) = \prod_{i=1}^{k} (D - \lambda_i)^{m_i}.$$

That the basic functions satisfy the differential equation P(D)y = 0 is left as homework. It follows from two facts (which are part of the homework problem):

- (a) $(D \alpha)(D \beta)f(t) = (D \beta)(D \alpha)f(t)$ for every sufficiently differentiable function f(t) and pair of constants α and β .
- (b) $P(D)(f(t)e^{\lambda t}) = e^{\lambda t}P(D+\lambda)(f(t))$ for every sufficiently differentiable function f(t) and constant λ .

(iii) For uniqueness, list the *n* functions in (2) in some order f_1, \ldots, f_n , and consider the mapping $\phi \colon \mathbb{C}^n \to \mathbb{C}^n$ defined as follows: for each $(\alpha_1, \ldots, \alpha_n) \in \mathbb{C}^n$, consider the solution

$$s_{\alpha}(t) = \alpha_1 f_1 + \dots \alpha_n f_n,$$

and let

$$\phi(\alpha_1,\ldots,\alpha_n) := (s_\alpha(0), s'_\alpha(0),\ldots,s^{(n-1)}_\alpha(0)) \in \mathbb{C}^n.$$

Since taking differentiation and evaluation are both linear operations, ϕ is linear. It is surjective since we know from part (ii) that we can find a solution as a linear combination of f_1, \ldots, f_n for each initial condition. Since ϕ is linear and has rank 4, i.e., dim $(\operatorname{im} \phi) = 4$, the rank-nullity theorem says that the kernel of ϕ is trivial. So ϕ is injective. Now take any two solutions that satisfy the same initial conditions. Each of these solutions is a linear combination of the basic functions, so they have the form s_{α} and s_{β} for some $\alpha, \beta \in \mathbb{C}^n$. Since they satisfy the same initial condition, we have $\phi(\alpha) = \phi(\beta)$. Since ϕ is injective, we have $\alpha = \beta$.