
Math 322 lecture for Monday, Week 6

n-th order linear homogeneous equations revisited

Consider the homogeneous linear equation

y(n) + an−1y
(n−1) + · · ·+ a1y

′ + a0y = 0 (1)

with initial condition y(i)(0) = bi for i = 0, 1, . . . , n−1. Recall the method of solution
introduced during the first two weeks of class. First we factor the characteristic
polynomial

P (x) =
k∏
i=1

(x− λi)mi ,

where the λi are distinct. We claimed that the most general solution was an arbitrary
linear combination of the basic functions

eλit, teλit, . . . , tmi−1eλit

for i = 1, . . . , k. We also claimed that for each initial condition, there would be a
unique solution. We now want to justify those claims.

Define
x1 := y, x2 := y′, x3 := y′′, . . . , xn := y(n−1).

We get a corresponding matrix equation

x′1
x′2
x′3
...

x′n−1
x′n


=



0 1
0 1

0 1
. . . . . .

0 1
−a0 −a1 −a2 . . . −an−2 −an−1





x1
x2
x3
...

xn−1
xn


.0

0

Let A denote the n×nmatrix above, and we can consider the differential equation x′ =
Ax with initial condition x0 = x(0) = (y(0), y′(0), . . . , y(n−1)(0)) = (b0, b1, . . . , bn−1).
The solution is

x(t) = eAtx0,

and the first component of this solution is x1(t) = y(t), the solution to the original
homogeneous system.

1



Proposition. Let P (x) =
∑n

i=0 aix
i be the characteristic polynomial for the linear

homogeneous equation (1). Then the characteristic polynomial for A is

pA(x) := det(A− xIn) = (−1)n+1P (x).

Proof. We have

A− xInA =



−x 1
−x 1

−x 1
. . . . . .

−x 1
−a0 −a1 −a2 . . . −an−2 −x− an−1

0
0

Multiply the second column by x and add it to the first column; then multiply the
third column by x2 and add it to the first column; and so on. This does not affect the
determinant, and the rows of the first column are all 0 now except the last, which is

−a0 − a1x− a2x2 − · · · − an−2xn−2 − (x+ an−1)x
n−1 = −P (x).

It follows that

det(A− xIn) = det



0 1
0 −x 1
0 −x 1
...

. . . . . .

0 −x 1
−P (x) −a1 −a2 . . . −an−2 −an−1 − x

0
0

Expand along the first column to get the result.

In order to solve the system, we are interested in the Jordan form for A. So we think
about this next.

Proposition. Let λ be an eigenvalue for A. Then the corresponding eigenspace is

Eλ = Span{(1, λ, λ2, . . . , λn−1)}

and is, hence, one-dimensional. So the geometric multiplicity of each eigenvalue for A
is 1.
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Proof. Suppose that Av = λv where v = (v1, . . . , vn). Note that

Av =



0 1
0 1

0 1
. . . . . .

0 1
−a0 −a1 −a2 . . . −an−2 −an−1





v1
v2
v3
...

vn−1
vn


= λ



v1
v2
v3
...

vn−1
vn


= λv

says v2 = λv1, v3 = λv2, . . . , vn = λvn−1. Thus,

v = (v1, λv1, λ
2v1, . . . , λ

n−1v1)

= v1(1, λ, λ
2, . . . , λn−1).

Corollary. Suppose that A has distinct eigenvalues λ1, . . . , λk (over C) with algebraic
multiplicities, m1, . . . ,mk, respectively, so the its characteristic polynomial is

pA(x) =
k∏
i=1

(λi − x)mi .

Then the Jordan form for A is
Jm1(λ1)

Jm2(λ2)
. . .

Jmk
(λk)

 .

0
0

Proof. This follows immediately from the preceding Proposition. The diagonal of the
Jordan form consists of the eigenvalues of A, repeated according to multiplicities. For
each Jordan block, there is a corresponding eigenvector for A (and several generalized
eigenvectors). If there where more than one Jordan block for a particular eigenvalue λ,
there would be more than one linearly independent eigenvector for λ, and we’ve just
seen that this cannot happen—each eigenspace has dimension 1.

Theorem. Suppose the roots for the characteristic polynomial for equation (1) or,
equivalently, the eigenvalues for A are λ1, . . . , λk with multiplicities m1, . . . ,mk, re-
spectively. Every solution to equation (1) (with a given initial condition) is a unique
linear combination of the basic functions{

tjeλit : 0 ≤ j < mi, 1 ≤ i ≤ k
}
, (2)
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and each linear combination of these functions is a solution for some initial condition.

Proof. There are three parts to this proof: (i) show each solution is a linear com-
bination of the basic functions; (ii) show each basic function satisfies the differential
equation (1); and (iii) show the basic equations are linearly independent.

(i) The solution to equation (1) is the first component of eAtx0. Letting P−1AP = J
be the Jordan form for A, the solution is

y(t) = eAtx0 = PeJtP−1,

and hence, is a linear combination of the entries of eJt. The result then follows from
the previous corollary recalling that

eJmi (λit) = eλit



1 t t2

2!
. . . . . . tmi−1

(mi−1)!

0 1 t . . . . . . tk−2

(mi−2)!

0 0 1 . . . . . . tk−3

(mi−3)!
. . .

...
...

...

0 . . . . . . 0 1 t

0 . . . . . . . . . 0 1


.

(ii) Consider the differential operator D := d
dt

. We can write equation (1) as

P (D)y = 0

where P (D) = xn + an−1x
n−1 + · · ·+ a1x+ a0. We are given that

P (D) =
k∏
i=1

(D − λi)mi .

That the basic functions satisfy the differential equation P (D)y = 0 is left as home-
work. It follows from two facts (which are part of the homework problem):

(a) (D − α)(D − β)f(t) = (D − β)(D − α)f(t) for every sufficiently differentiable
function f(t) and pair of constants α and β.

(b) P (D)(f(t)eλt) = eλtP (D + λ)(f(t)) for every sufficiently differentiable func-
tion f(t) and constant λ.
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(iii) For uniqueness, list the n functions in (2) in some order f1, . . . , fn, and consider
the mapping φ : Cn → Cn defined as follows: for each (α1, . . . , αn) ∈ Cn, consider the
solution

sα(t) = α1f1 + . . . αnfn,

and let
φ(α1, . . . , αn) := (sα(0), s′α(0), . . . , s(n−1)α (0)) ∈ Cn.

Since taking differentiation and evaluation are both linear operations, φ is linear.
It is surjective since we know from part (ii) that we can find a solution as a linear
combination of f1, . . . , fn for each initial condition. Since φ is linear and has rank 4,
i.e., dim(imφ) = 4, the rank-nullity theorem says that the kernel of φ is trivial. So φ
is injective. Now take any two solutions that satisfy the same initial conditions. Each
of these solutions is a linear combination of the basic functions, so they have the
form sα and sβ for some α, β ∈ Cn. Since they satisfy the same initial condition, we
have φ(α) = φ(β). Since φ is injective, we have α = β.
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