Math 322 lecture for Wednesday, Week 3

From now on, page references are to our text. Recall that we will always be working
over the field F' =R or C.

Definition. A sequence (vg) in a normed vector space (V| ||) is a Cauchy sequence
if for all € > 0 there exists N € R such that for all m,n > N, we have

|vn — vl < e.

A theorem from analysis says that if V' is finite-dimensional then it is complete: a
sequence (vy) converges if and only if it is a Cauchy sequence.

Lemma. (Weierstrass M-test) Let V and W be normed vector spaces with V' finite-
dimensional. For each & > 0, let fi.: W — V be a function. Let C' C W, and suppose
there exists a sequence (My) of positive numbers such that

[fx(2) || < M

for all € C and for all k. Suppose further that ), M), converges. Then ), f is
absolutely and uniformly convergent on C.

Proof. A sequence in a normed space over F' converges if and only if it’s a Cauchy
sequence. Let ¢ > 0. Since ), M) converges, there exists N € R such that for
alln >m > N, we have

| ZZ:O M, — Z;nzo My| = | ZZ:erl M| <e.

But then for n > m > N is follows that for all z € C

12 kst Se@) < 2t (@) < 2o Mi <
Thus ), fi is uniformly Cauchy. O
We are now ready to prove that it makes sense to exponentiate a matrix:
Theorem. For all A € M,(F) and ¢y > 0, the function R — M, (F') given by
A*tF

k!
k>0

converges absolutely and uniformly for ¢ € [—tg, to].



Proof. Let a := ||A|| and suppose that |t| < t5. Then from Lemma 1 in the previous
lecture,
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It follows that
S M= e
k>0
the usual exponential function. The result follows by the Weierstrass M-test. O

Definition. Let A € M, (F) and ¢t € R. Then
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Note: The proof of the previous theorem shows that e is absolutely convergent and
uniformly convergent on any closed interval for ¢. Further,

e < ellAllEl
To rigorously prove this last statement, note that
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The norm is a continuous function and hence commutes with limits, and limits pre-
serve inequalities. It therefore follows that
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Proposition. (p. 13) Let A, P € M, (F) with P invertible. Then

—1 _
e’ AP = pledP,



Proof. Recall the trick from linear algebra:
(P'AP)F = (P7'AP)(P~'AP)(P™'AP) .- (P7'AP)
= P 'A(PP HAPP YA(P---P HAP
=P 'AFP.

Therefore,
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The matrices P~! and P can be pulled out of the sum since multiplication by these

represent linear transformations, which are continuous, and the sum is a limit—Ilimits
commute with continuous functions (by definition of continuity). O

Proposition. (p. 13) Let A, B € M, (F). If A and B commute, then e85 = eA4eB,

Proof.

1
(A+B): (A B)"
(AT =37~ (4+ B)

n>0

s (s 2w)

n>0 i+j=n
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>0 : j§>0

= 6A€B.



Corollary. (p. 13) If A € M, (F), then

Proof. Since A and —A commute,

I, = 0 = AH(=A) — pA—A

]

Example. The above proposition only holds, in general, if the matrices A and B

commute. Consider,
0 1 10
A= ( 00 ) and B = ( 0 2 )

It is easy to check that AB # BA.

Since A* =0 for k > 1,
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On the other hand, you can check by induction that

(A+B)k:<(1) 2k2;1>.

Thus,

Hence,
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