
Math 322 lecture for Friday, Week 3

Lemma. (p. 17) Let A ∈Mn(F ). Then

d

dt
eAt = AeAt.

Proof. For any constants t and h, we know At and Ah commute. Therefore,

d

dt
eAt = lim

h→0

eA(t+h) − eAt

h

= lim
h→0

eAteAh − eAt

h

= lim
h→0

eAt e
Ah − In

h
.

Multiplication by a matrix is a linear and, hence, continuous transformation, and by
definition, continuous functions commute with limits. So, continuing from above,

d

dt
eAt = lim

h→0
eAt e

Ah − In
h

= eAt lim
h→0

eAh − In
h

.

We now use the fact that eAh is absolutely an uniformly convergent for h restricted
to a compact set, e.g., for h ∈ [−1, 1]. This means, roughly, the we can manipulate
the infinite sum defining the exponential as if it were a polynomial:

d

dt
eAt = eAt lim

h→0

eAh − In
h

= eAt lim
h→0

1

h

(
Ah +

A2h2

2!
+

A3h3

3!
+ . . .

)
= eAtA

= AeAt.

The final step follows since A commutes with itself.
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Theorem. (The Fundamental Theorem for Linear Systems. (p. 17)) Let A ∈Mn(F ),
and let x0 ∈ F n. The initial value problem

x′ = Ax

x(0) = x0

has the unique solution
x = eAtx0.

Proof. Using the preceding lemma, if x(t) := eAtx0, then

x′(t) =
d

dt
x(t)

=
d

dt

(
eAtx0

)
=

(
d

dt
eAt

)
x0

= AeAtx0

= Ax.

Further, x(0) = e0x0 = x0. For uniqueness, suppose that x(t) is any solution, and
consider y(t) := e−Atx(t). By the product rule,

y′(t) =
(
e−At

)′
x(t) + e−Atx′(t)

= −Ae−Atx(t) + e−At (Ax(t))

= e−At (−Ax(t) + Ax(t))

= 0.

Therefore y(t) is constant. To determine the constant, let t = 0:

y(0) = e0x(0) = Inx0 = x0.

Then,
y(t) = e−Atx(t) = x0 ⇒ x(t) = eAtx0.

�
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two-dimensional linear systems

Example. Consider the (coupled) linear system

x′1 = x2

x′2 = x1.

Given an initial condition (a, b), a solution will be a curve x(t) = (x1(t), x2(t)) in the
plane, passing through (a, b) at time t = 0. The system itself tells us the velocity
vector of any potential solution at every time:

x′(t) = (x′1(t), x
′
2(t)) = (x2(t), x1(t)).

So the system determines the vector field F (x1, x2) = (x2, x1) on R2, pictured below:

Any solution curve must “follow the flow”, i.e., its velocity vectors coincide with those
already drawn above. Some possible solution curves are drawn below. You can see
the paths of the curves but not their speeds:
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We will now solve the system using the tools we have developed. First write the

system as x′ = Ax with A =

(
0 1
1 0

)
:

(
x′1
x′2

)
=

(
0 1
1 0

)(
x1

x2

)
.

The solution is x = eAtx0 where x0 = x(0). In order to exponentiate A, we diagonalize
it. The characteristic polynomial of A is

det(A− xI2) = det

(
−x 1
1 −x

)
= x2 − 1 = (x + 1)(x− 1).

So the eigenvalues are ±1. It’s easy to eyeball the corresponding eigenvectors: (1, 1)
and (1,−1), respectively. So let

P =

(
1 1
1 −1

)
.

Then

P−1 =
1

2

(
1 1
1 −1

)
,

and P−1AP = diag(1,−1) =: D.

Therefore, D = PAP−1, and

eAt = ePDP−1t = eP (Dt)P−1

= PeDtP−1

=
1

2

(
1 1
1 −1

)(
et 0
0 e−t

)(
1 1
1 −1

)

=
1

2

(
et + e−t et − e−t

et − e−t et + e−t

)
.

So, for example, the solution with initial condition x(0) = (1, 0) is

x(t) = eAt

(
1
0

)
=

1

2

(
et + e−t et − e−t

et − e−t et + e−t

)(
1
0

)
=

1

2

(
et + e−t

et − e−t

)
.

To see what is happening geometrically, note that

x′ = Ax = PDP−1x ⇒ P−1x′ = DP−1x.
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Letting y := P−1x, we have y′ = P−1x′. So substituting gives

y′ = Dy =

(
1 0
0 −1

)
y

an uncoupled system:

y′1 = y1

y′2 = −y2

with solution y1 = aet and y2 = be−t. We then get the solution to our original
equation by

x = Py.

The initial condition x(0) = (1, 0) in the x-coordinates transforms to the initial
condition

y(0) = P−1x(0) = P−1
(

1
0

)
=

1

2

(
1
1

)
in the y-coordinates, which implies a = b = 1

2
. So in the y-coordinates, our solution

is

y(t) =
1

2
(et, e−t).

The geometry is shown below:

P =

(
1 1
1 −1

)

y → Py = x

Question. How is the magnitude and sign of the determinant of P expressed in the
above image?
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