Math 322 Homework 7

PROBLEM 1. Let X,Y be subsets of normed linear spaces $(V,\|\ \|_V)$ and $(W,\|\ \|_W)$, respectively, and suppose $f\colon X\to Y$. Then f is continuous if for all $u\in X$ and for all $\varepsilon>0$, there exists $\delta=\delta(u,\varepsilon)>0$ such that $\|u-v\|_V<\delta$ implies $\|f(u)-f(v)\|_W<\varepsilon$.

- (a) For any normed linear space (V, || ||), prove that $|| || : V \to \mathbb{R}$ is continuous (with the usual norm on \mathbb{R}).
- (b) Let X be a subset of a normed linear space (V, || ||). Suppose $T: X \to X$ is a contraction mapping. Prove that T is continuous.

Problem 2. Our existence-uniqueness theorem applies to an initial value problem

$$x' = f(x)$$
$$x(0) = x_0$$

where f is a continuously differentiable function. If f is just continuous, it no longer applies. Here is an example: consider the initial value problem

$$x' = 2\sqrt{x}$$
$$x(0) = 0.$$

For each a > 0, define

$$x_a(t) := \begin{cases} 0 & \text{if } t \le a \\ (t-a)^2 & \text{if } t > a. \end{cases}$$

- (a) Sketch the graph of $x_a(t)$.
- (b) Each $x_a(t)$ is clearly differentiable away from t = a. Use the definition of the derivative to prove that $x_a(t)$ is differentiable at t = a.
- (c) Show that each $x_a(t)$ solves the initial value problem.

PROBLEM 3. Read Theorems 1 and 2 in Section 2.4 (*The Maximal Interval of Existence*). Consider the initial value problem

$$x'_1 = x_1^2$$
 $x_1(0) = 1$ $x'_2 = x_2 + \frac{1}{x_1}$ $x_2(0) = 1$.

- (a) Solve the initial value problem showing your technique.
- (b) What is the maximal interval of existence (α, β) ?
- (c) Use a computer to draw the vector field and your solution in a single plot.
- (d) How is Theorem 2 exemplified by your solution?
- (e) What is the speed of your solution at each time t in the interval of existence?