Math 322 Homework 5

PROBLEM 1. Recall that for the Jordan block matrix $J_k(\lambda)$, we have

$$(J_k(\lambda) - \lambda I_k)e_1 = e_1,$$

i.e., e_1 is an eigenvector for $J_k(\lambda)$, and

$$(J_k(\lambda) - \lambda I_k)e_i = e_{i-1}$$

for i = 2, ..., k. So in order to put an $n \times n$ matrix A into Jordan form, for each eigenvalue λ , we look for vectors v_i such that

$$(A - \lambda I_n)v_1 = v_1,$$

and

$$(A - \lambda I_n)v_i = v_{i-1}$$

for i = 2, ... These v_i will end up as columns in a matrix P for which $P^{-1}AP$ is in Jordan from.

This problem will consider a simple example of this procedure. Let

$$A = \left(\begin{array}{rrr} 1 & 4 \\ -1 & 5 \end{array}\right).$$

Do all of the following exercises by hand, and show your work.

- (a) Compute the characteristic polynomial p(x) for A, and factor it to find the single eigenvalue λ for A (with multiplicity 2).
- (b) Find an eigenvector v_1 for λ with integer components (to make things simple).
- (c) Find a vector v_2 , again with integer components, such that

$$(A - \lambda I_2)v_2 = v_1.$$

(d) Let P be the matrix with columns v_1 and v_2 (in that order), and show that $P^{-1}AP$ is in Jordan form.

PROBLEM 2. Find all possible Jordan forms for a matrix with a single real eigenvalue $u \in \mathbb{R}$ of multiplicity 4 (up to permutations of the blocks).

PROBLEM 3. Let $A \in M_4(\mathbb{R})$ with two *not necessarily distinct* real eigenvalues u and v and one pair of conjugate non-real eigenvalues $a \pm bi$. Find the possible real Jordan forms for A (up to permutation of blocks and $\pm b$).

PROBLEM 4. Describe all possible Jordan forms for a real 2×2 degenerate system (i.e., with determinant 0). There are two possibilities for which 0 is a repeated eigenvalue and an infinite class of possibilities for which 0 is an eigenvalue of multiplicity 1. For each, describe the solution to x' = Jx with initial condition $x_0 = (\alpha, \beta) \in \mathbb{R}^2$.

PROBLEM 5. Solve the system

$$x' = \begin{pmatrix} -1 & 1 \\ 0 & -1 \end{pmatrix} x + \begin{pmatrix} 0 \\ 1 \end{pmatrix},$$

with initial condition $x(0) = (7, 5) \in \mathbb{R}^2$, using the method from section 1.10 of our text. (Using the notation from section 1.10, take $\Phi(t) = e^{At}$. Show your work).