## Math 322

April 18, 2022

## Global phase portraits



$$x' = x^2 + y^2 - 1$$
$$y' = 5xy - 5$$

$$x' = x^2 + y^2 - 1$$
$$y' = 5xy - 5$$

Critical points of the system, including critical points at  $\infty$ .

$$0 = yP\left(\frac{x}{z}, \frac{y}{z}\right) - xQ\left(\frac{x}{z}, \frac{y}{z}\right)$$

$$y'=5xy-5$$

Critical points of the system, including critical points at  $\infty$ .

$$\frac{1}{2} \left( \begin{array}{c} x & y \\ y \end{array} \right) = \frac{1}{2} \left( \begin{array}{c} x & y \\ y \end{array} \right)$$

$$0 - vP\left(\frac{x}{y}\right) - vO\left(\frac{x}{y}\right)$$

 $0 = yP\left(\frac{x}{2}, \frac{y}{2}\right) - xQ\left(\frac{x}{2}, \frac{y}{2}\right)$ 

 $=y\left(\left(\frac{x}{z}\right)^2+\left(\frac{y}{z}\right)^2-1\right)-x\left(5\left(\frac{x}{z}\right)\left(\frac{y}{z}\right)-5\right)$ 

 $=\frac{x^2y+y^3-yz^2-5x^2y+5xz^2}{z^2}$ 

 $x' = x^2 + v^2 - 1$ 

$$x' = x^2 + y^2 - 1$$
$$y' = 5xy - 5$$

Critical points of the system, including critical points at  $\infty$ .

$$0 = yP\left(\frac{x}{z}, \frac{y}{z}\right) - xQ\left(\frac{x}{z}, \frac{y}{z}\right)$$

$$= y\left(\left(\frac{x}{z}\right)^2 + \left(\frac{y}{z}\right)^2 - 1\right) - x\left(5\left(\frac{x}{z}\right)\left(\frac{y}{z}\right) - 5\right)$$

$$= \frac{x^2y + y^3 - yz^2 - 5x^2y + 5xz^2}{z^2}$$

Clear denominators and set z = 0:

$$-4x^2y + y^3 = y(-4x^2 + y^2) = 0$$

Points to consider  $\pm (1, 0, 0), \pm \frac{1}{\sqrt{5}} (1, \pm 2, 0)$ .

Points to consider  $\pm (1, 0, 0), \pm \frac{1}{\sqrt{5}} (1, \pm 2, 0)$ .

Projection to 
$$x = 1$$
 plane:

Projection to 
$$x = 1$$
 plane:

 $v' = -v^3 \left( \frac{1}{v^2} + \frac{u^2}{v^2} - 1 \right) = -v - u^2 v + v^3.$ 

$$\pm (1,0,0), \pm \sqrt{5}(1,\pm 2,0).$$
1 plane:

$$\pm (1,0,0), \pm \frac{1}{\sqrt{5}}(1,\pm 2,0).$$

 $u' = v^{2} \left( \frac{5u}{v^{2}} - 5 - u \left( \frac{1}{v^{2}} + \frac{u^{2}}{v^{2}} - 1 \right) \right) = 4u - 5v^{2} - u^{3} + uv^{2}$ 

$$\pm(1,0,0),\pm\frac{1}{\sqrt{5}}(1,\pm2,0).$$

$$_{\bar{5}}(1,\pm 2,0).$$

$$_{\bar{5}}(1,\pm 2,0).$$

Points to consider  $\pm (1, 0, 0), \pm \frac{1}{\sqrt{k}} (1, \pm 2, 0)$ .

$$u' = v^{2} \left( \frac{5u}{v^{2}} - 5 - u \left( \frac{1}{v^{2}} + \frac{u^{2}}{v^{2}} - 1 \right) \right) = 4u - 5v^{2} - u^{3} + uv^{2}$$

Projection to 
$$x = 1$$
 plane:

Projection to 
$$x = 1$$
 plane:

 $v' = -v^3 \left( \frac{1}{v^2} + \frac{u^2}{v^2} - 1 \right) = -v - u^2 v + v^3.$ 

$$\pm(1,0,0),\pm\frac{1}{\sqrt{5}}(1,\pm2,0)$$

$$(0,0),\pm\frac{1}{\sqrt{5}}(1,\pm 2,0).$$

 $Jf(0,0) = \begin{pmatrix} 4 & 0 \\ 0 & -1 \end{pmatrix}$  and  $J(\pm 2,0) = \begin{pmatrix} -8 & 0 \\ 0 & -5 \end{pmatrix}$ .

$$(1,\pm 2,0).$$

$$,\pm 2,0).$$





$$x' = x^3 - 3xy^2$$

$$y' = 3x^2y - y^3.$$

Points to check:  $\pm(1,0,0)$  and  $\pm(0,1,0)$ .

Points to check:  $\pm(1,0,0)$  and  $\pm(0,1,0)$ . To check (1,0,0), we project to the x = 1 plane:

project to the 
$$x=1$$
 plane: 
$$u'=2u+2u^3$$

 $v' = -v + 3u^2v$ 

Points to check:  $\pm(1,0,0)$  and  $\pm(0,1,0)$ . To check (1,0,0), we project to the x = 1 plane:

$$u' = 2u + 2u^3$$

$$v' = -v + 3u^2v$$

For the point (0,1,0), project to the plane y=1. The system is

For the point 
$$(0,1,0)$$
, project to the plane  $y=1$ . The system is  $y'=-2y-2y^3$ 

 $v' = v - 3u^2v$ 

## Global phase portrait:



## Global phase portrait:



Note that the sum of the indices for the corresponding flow on the sphere is 2, as is necessary.

$$x' = -y - xy$$
$$y' = x + x^{2}.$$



Interesting points  $\pm (0, 1, 0)$ .

Interesting points  $\pm (0,1,0)$ . Projecting to the plane y=1, we get

$$u' = -u - v - u^3 - u^2 v$$
  
 $v' = -u^2 v - u v^2$ .

Interesting points  $\pm (0,1,0)$ . Projecting to the plane y=1, we get

$$u' = -u - v - u^3 - u^2 v$$
  
 $v' = -u^2 v - uv^2$ ,



