Math 322

April 22, 2022

- ► Presentation date
- ▶ topic assignments

 $E\subseteq \mathbb{R}^{2n}$ open,

$$E \subseteq \mathbb{R}^{2n}$$
 open, $H \colon E \to \mathbb{R}$ in $C^2(E)$

$$E \subseteq \mathbb{R}^{2n}$$
 open, $H: E \to \mathbb{R}$ in $C^2(E)$
 $H(x_1, \dots, x_n, y_1, \dots, y_n) =: H(x, y)$

$$E\subseteq \mathbb{R}^{2n}$$
 open, $H\colon E o \mathbb{R}$ in $C^2(E)$

$$H(x_1,\ldots,x_n,y_1,\ldots,y_n)=:H(x,y)$$

Hamiltonian system with n degrees of freedom:

$$x' = (x'_1, \dots, x'_n) = H_y := \frac{\partial H}{\partial y} = \left(\frac{\partial H}{\partial y_1}, \dots, \frac{\partial H}{\partial y_n}\right)$$

$$y' = (y'_1, \dots, y'_n) = -H_x := -\frac{\partial H}{\partial x} = -\left(\frac{\partial H}{\partial x_1}, \dots, \frac{\partial H}{\partial x_n}\right).$$

$$E \subseteq \mathbb{R}^{2n}$$
 open, $H: E \to \mathbb{R}$ in $C^2(E)$
 $H(x_1, \dots, x_n, y_1, \dots, y_n) =: H(x, y)$

Hamiltonian system with n degrees of freedom:

$$x' = (x'_1, \dots, x'_n) = H_y := \frac{\partial H}{\partial y} = \left(\frac{\partial H}{\partial y_1}, \dots, \frac{\partial H}{\partial y_n}\right)$$
$$y' = (y'_1, \dots, y'_n) = -H_x := -\frac{\partial H}{\partial x} = -\left(\frac{\partial H}{\partial x_1}, \dots, \frac{\partial H}{\partial x_n}\right).$$

H = Hamiltonian or total energy of the system.

Theorem. (Conservation of energy.) For a Hamiltonian system, the total energy \boldsymbol{H} is constant along trajectories.

Theorem. (Conservation of energy.) For a Hamiltonian system, the total energy H is constant along trajectories.

Proof. Consider a solution trajectory $\gamma(t) = (x(t), y(t))$ in \mathbb{R}^{2n} .

Theorem. (Conservation of energy.) For a Hamiltonian system, the total energy H is constant along trajectories.

Proof. Consider a solution trajectory $\gamma(t)=(x(t),y(t))$ in \mathbb{R}^{2n} . By the chain rule,

$$\frac{d}{dt}H(\gamma(t)) = \nabla H \cdot \gamma'$$

Theorem. (Conservation of energy.) For a Hamiltonian system, the total energy H is constant along trajectories.

Proof. Consider a solution trajectory $\gamma(t)=(x(t),y(t))$ in \mathbb{R}^{2n} . By the chain rule,

$$\frac{d}{dt}H(\gamma(t)) = \nabla H \cdot \gamma'$$

$$= \frac{\partial H}{\partial x} \cdot x' + \frac{\partial H}{\partial y} \cdot y'$$

Theorem. (Conservation of energy.) For a Hamiltonian system, the total energy H is constant along trajectories.

Proof. Consider a solution trajectory $\gamma(t)=(x(t),y(t))$ in \mathbb{R}^{2n} . By the chain rule,

$$\frac{d}{dt}H(\gamma(t)) = \nabla H \cdot \gamma'$$

$$= \frac{\partial H}{\partial x} \cdot x' + \frac{\partial H}{\partial y} \cdot y'$$

$$= \frac{\partial H}{\partial x} \cdot \frac{\partial H}{\partial y} - \frac{\partial H}{\partial y} \cdot \frac{\partial H}{\partial x}$$

$$= 0.$$

L

Theorem. (Conservation of energy.) For a Hamiltonian system, the total energy H is constant along trajectories.

Proof. Consider a solution trajectory $\gamma(t)=(x(t),y(t))$ in \mathbb{R}^{2n} . By the chain rule,

$$\frac{d}{dt}H(\gamma(t)) = \nabla H \cdot \gamma'$$

$$= \frac{\partial H}{\partial x} \cdot x' + \frac{\partial H}{\partial y} \cdot y'$$

$$= \frac{\partial H}{\partial x} \cdot \frac{\partial H}{\partial y} - \frac{\partial H}{\partial y} \cdot \frac{\partial H}{\partial x}$$

$$= 0.$$

Solutions lie on level sets for H.

Example

Let $H(x, y) = y \sin(x)$ and consider the Hamiltonian with one degree of freedom:

$$x' = H_y = \sin(x)$$

$$y' = -H_x = -y\cos(x).$$

$$x' = \frac{\partial H}{\partial y} = \left(\frac{\partial H}{\partial y_1}, \dots, \frac{\partial H}{\partial y_n}\right)$$
$$y' = -\frac{\partial H}{\partial x} = -\left(\frac{\partial H}{\partial x_1}, \dots, \frac{\partial H}{\partial x_n}\right)$$

The critical points of a Hamiltonian system occur at the critical points of the Hamiltonian, i.e., where $\nabla H = 0$.

$$x' = \frac{\partial H}{\partial y} = \left(\frac{\partial H}{\partial y_1}, \dots, \frac{\partial H}{\partial y_n}\right)$$
$$y' = -\frac{\partial H}{\partial x} = -\left(\frac{\partial H}{\partial x_1}, \dots, \frac{\partial H}{\partial x_n}\right)$$

The critical points of a Hamiltonian system occur at the critical points of the Hamiltonian, i.e., where $\nabla H = 0$.

These occur where the graph of H

$$\operatorname{graph}(H) := \left\{ (x, y, H(x, y)) \subset \mathbb{R}^{2n+1} : (x, y) \in E \right\},$$

has a horizontal tangent space.

At a critical point p, the geometry of H is determined by its second partials.

At a critical point p, the geometry of H is determined by its second partials. (Why?

At a critical point p, the geometry of H is determined by its second partials. (Why? Consider the Taylor series.)

At a critical point p, the geometry of H is determined by its second partials. (Why? Consider the Taylor series.)

WLOG, suppose p = 0 is a critical point.

At a critical point p, the geometry of H is determined by its second partials. (Why? Consider the Taylor series.)

WLOG, suppose p=0 is a critical point. The second-order Taylor polynomial is

$$H(0) + \underbrace{\frac{1}{2} \frac{\partial^2 H}{\partial x_1^2}(0) x_1^2 + \frac{\partial^2 H}{\partial x_1 \partial x_2}(0) x_1 x_2 + \cdots + \frac{1}{2} \frac{\partial^2 H}{\partial y_n^2}(0) y_n^2}_{Q(x,y)}.$$

At a critical point p, the geometry of H is determined by its second partials. (Why? Consider the Taylor series.)

WLOG, suppose p=0 is a critical point. The second-order Taylor polynomial is

$$H(0) + \underbrace{\frac{1}{2} \frac{\partial^2 H}{\partial x_1^2}(0) x_1^2 + \frac{\partial^2 H}{\partial x_1 \partial x_2}(0) x_1 x_2 + \dots + \frac{1}{2} \frac{\partial^2 H}{\partial y_n^2}(0) y_n^2}_{Q(x,y)}.$$

Linear algebra (spectral theorem): after a linear change of coordinates, \boldsymbol{Q} has the form

$$\widetilde{Q} = v_1^2 + \dots + v_k^2 - v_{k+1}^2 - \dots - v_r^2$$

Example, continued

$$x' = H_y = \sin(x)$$

$$y' = -H_x = -y\cos(x)$$

Lemma

Corollary. Let $p \in \mathbb{R}^{2n}$. Suppose there is a solution $\gamma(t) = (x(t), y(t))$ such that $\gamma(0) \neq p$ but such that $\gamma(t) \to p \in \mathbb{R}^{2n}$ as either $t \to \infty$ or $t \to -\infty$.

Lemma

Corollary. Let $p \in \mathbb{R}^{2n}$. Suppose there is a solution $\gamma(t) = (x(t), y(t))$ such that $\gamma(0) \neq p$ but such that $\gamma(t) \to p \in \mathbb{R}^{2n}$ as either $t \to \infty$ or $t \to -\infty$.

Then p is not a strict minimum or maximum of H.

Theorem. Consider a Hamiltonian system with one degree of freedom and total energy function H(x, y).

Theorem. Consider a Hamiltonian system with one degree of freedom and total energy function H(x, y). Suppose that H is analytic.

Theorem. Consider a Hamiltonian system with one degree of freedom and total energy function H(x, y). Suppose that H is analytic. Then its nondegenerate critical points are either topological saddles are centers.

Theorem. Consider a Hamiltonian system with one degree of freedom and total energy function H(x, y). Suppose that H is analytic. Then its nondegenerate critical points are either topological saddles are centers.

Proof. Linearized system:

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \underbrace{\begin{pmatrix} H_{yx} & H_{yy} \\ -H_{xx} & -H_{xy} \end{pmatrix}}_{A} \begin{pmatrix} x \\ y \end{pmatrix}.$$

Proof. Linearized system:

$$x'' = f(x)$$

$$x'' = f(x)$$

Equivalently,

$$x' = y$$
$$y' = f(x).$$

$$x'' = f(x)$$

Equivalently,

$$x' = y$$

$$y' = f(x).$$

Hamiltonian with $H_y = y$ and $H_x = -f(x)$.

$$x'' = f(x)$$

Equivalently,

$$x' = y$$

$$y' = f(x).$$

Hamiltonian with $H_y = y$ and $H_x = -f(x)$. It follows that

$$H(x,y) = T(y) + U(x)$$

where $T(y) = \frac{1}{2}y^2$ (kinetic energy) and $U(x) = -\int_{x_0}^x f(s) \, ds$ (potential energy).

Theorem. The critical points of this Newtonian system lie on the x-axis. The point $(x_0,0)$ is a critical point iff x_0 is a critical point of the function U(x), i.e., iff $U'(x_0) = 0$. Suppose that H is analytic. Then,

- 1. If x_0 is a strict local maximum for U, then $(x_0, 0)$ is a saddle for the system.
- 2. If x_0 is a strict local minimum for U, then $(x_0, 0)$ is a center for the system.
- 3. If x_0 is a horizontal inflection point for U (which means its first nonzero derivative at x_0 is of an odd order), then $(x_0, 0)$ is a cusp (i.e., two hyperbolic sectors and two separatrices).

$$x'' = -\sin(x)$$

$$x'' = -\sin(x)$$

$$x' = y$$
$$y' = -\sin(x)$$

$$x'' = -\sin(x)$$

$$x' = y$$

$$y' = -\sin(x)$$

$$x = position; y = velocity$$

$$x'' = -\sin(x)$$

$$x' = y$$

$$y' = -\sin(x)$$

$$x = \text{position}; \ y = \text{velocity}$$

Kinetic energy $= \frac{1}{2}y^2$

$$x'' = -\sin(x)$$

$$x' = y$$

$$y' = -\sin(x)$$

$$x = position; y = velocity$$

Kinetic energy = $\frac{1}{2}y^2$

Potential energy: $U(x) = \int_0^x \sin(s) ds = 1 - \cos(x)$