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Critical points at infinity
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Our goal now is to look at critical points of this system “at
infinity”.
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Induced flow on the sphere:

S N

(Sage demo)



Critical points at infinity

Using central projection, project the flow from the plane z =1 to
the sphere:
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Scale a point in the plane I, at height z =1 by some Z € R so
that it sits on the sphere:

Z(x,y,1)=(Zx,2y,2) = (X, Y, 2).

Condition:
(Zx)? +(2Zy)* + 22 = 1.
So
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The corresponding point on the sphere is

1

VX2 +y?+1

(X,Y,2) = (x,y,1).
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Critical points at infinity

Since
X Y
x=- and y = a
we may use the fact that x¥’ = P and y/ = Q to get
0=QP— PQ
=Qx' — Py

o(3)-#(3)

X'Z—-XZ Y'Z - YZ
= Q(z2) -F (z2>
Clear denominators and regroup terms:

QZX' — PZY' + (PY — QX)Z' =0
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Critical points at infinity

Re-write
QzX' — PZY' + (PY — QX)Z’ =0

as
(QZ,—PZ,PY — QX)- (X', Y',Z') = 0.

Meaning: the solution curve y(t) = (X(t), Y(t), Z(t)) has velocity
normal to the vector N := (QZ, —PZ, PY — QX):

N-~'(t) = 0.
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Limitas Z — 0

(QZ,—PZ,PY — QX)- (X', Y',Z) = 0.
XY XY
'D(X7y)_P(sz> and Q(X’y)_Q<Z’Z>
Let d = max{deg(P),deg(Q)} and scale to remove denominators:

P :=2zP, Q" :=279Q, N*:=ZIN=(Q"Z,—P*Z P'Y-Q*X).
N*-+/(t) = (Q*Z,—P*Z,P*Y — Q*X) - v(t) = 0.

What happens as Z — 0, i.e., as we approach the equator?
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Limitas Z — 0

N*-+'(t) =(Q*Z,—P*Z, P*Y — Q*X) - y(t) = 0.

Case 1. If P*Y — Q*X 4 0, then N — (0,0, a) for some a # 0.
The induced flow runs along the equator. (Can a critical point on
the equator arise in this situation?)

Case 2: Otherwise, we look for critical points along the equator for
which P*Y — Q*X =0
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Analyzing critical points at infinity

2. (continued)

So in the wu, v-plane representing [y, our job is to analyze the
point g, 0), i.e., the point corresponding to the projection
of (a, b,0), for the system defined by
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3. (only necessary if a=0) If b # 0, project the flow onto the
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Analyzing critical points at infinity

3. (only necessary if a=0) If b # 0, project the flow onto the
plane y = 1:

Mg — Myy ~ R?
(x,y,1) = (x/y,1,1)y) = (x/y,1/y)
~



