Math 322

April 4, 2022

Grogu

Statistics job talk

Speaker: Chetkar Jha

Title: Multiple Hypothesis Testing Approach to Estimate the Number of Networks in Sparse Stochastic Block Models

4:45–5:35 Tuesday, Bio 19

$$x' = -2y + yz$$
$$y' = x - xz$$
$$z' = xy$$

$$x' = -2y + yz$$
$$y' = x - xz$$
$$z' = xy$$

eigenvalues $=0,\pm\sqrt{2}i$ (origin is nonhyperbolic equilibrium point)

$$x' = -2y + yz$$
$$y' = x - xz$$
$$z' = xy$$

eigenvalues $=0,\pm\sqrt{2}i$ (origin is nonhyperbolic equilibrium point)

$$x' = -2y + yz$$
$$y' = x - xz$$
$$z' = xy$$

eigenvalues $=0,\pm\sqrt{2}i$ (origin is nonhyperbolic equilibrium point)

$$\dot{V} = 2axx' + 2byy' + 2czz'$$

$$x' = -2y + yz$$
$$y' = x - xz$$
$$z' = xy$$

eigenvalues $=0,\pm\sqrt{2}i$ (origin is nonhyperbolic equilibrium point)

$$\dot{V} = 2axx' + 2byy' + 2czz'$$

$$= 2ax(-2y + yz) + 2by(x - xz) + 2cz(xy)$$

$$x' = -2y + yz$$
$$y' = x - xz$$
$$z' = xy$$

eigenvalues $=0,\pm\sqrt{2}i$ (origin is nonhyperbolic equilibrium point)

$$\dot{V} = 2axx' + 2byy' + 2czz'$$
= $2ax(-2y + yz) + 2by(x - xz) + 2cz(xy)$
= $2(-2a + b)xy + (a - b + c)xyz$.

$$x' = -2y + yz$$
$$y' = x - xz$$
$$z' = xy$$

eigenvalues $=0,\pm\sqrt{2}i$ (origin is nonhyperbolic equilibrium point)

Look for Liapunov function of the form $V = ax^2 + by^2 + cz^2$:

$$\dot{V} = 2axx' + 2byy' + 2czz'
= 2ax(-2y + yz) + 2by(x - xz) + 2cz(xy)
= 2(-2a + b)xy + (a - b + c)xyz.$$

Take a = c = 1 and b = 2.

$$x' = -2y + yz$$
$$y' = x - xz$$
$$z' = xy$$

eigenvalues $=0,\pm\sqrt{2}i$ (origin is nonhyperbolic equilibrium point)

Look for Liapunov function of the form $V = ax^2 + by^2 + cz^2$:

$$\dot{V} = 2axx' + 2byy' + 2czz'
= 2ax(-2y + yz) + 2by(x - xz) + 2cz(xy)
= 2(-2a + b)xy + (a - b + c)xyz.$$

Take a = c = 1 and b = 2. (Sage demo)

Consider

$$x' = P(x, y)$$
$$y' = Q(x, y)$$

having (0,0) as an equilibrium point.

Consider

$$x' = P(x, y)$$
$$y' = Q(x, y)$$

having (0,0) as an equilibrium point. Possibilities:

Consider

$$x' = P(x, y)$$
$$y' = Q(x, y)$$

having (0,0) as an equilibrium point. Possibilities:

► The origin is a **center** if there exists $\delta > 0$ such that every trajectory with initial condition in $B_{\delta} \setminus \{(0,0)\}$ is a closed curve containing (0,0) in its interior.

Consider

$$x' = P(x, y)$$
$$y' = Q(x, y)$$

having (0,0) as an equilibrium point. Possibilities:

- ► The origin is a **center** if there exists $\delta > 0$ such that every trajectory with initial condition in $B_{\delta} \setminus \{(0,0)\}$ is a closed curve containing (0,0) in its interior.
- Let $r(t, r_0, \theta_0)$ and $\theta(t, r_0, \theta_0)$ denote the solution to our system in polar coordinates and with initial conditions $r(0) = r_0$ and $\theta(0) = \theta_0$. The origin is a **stable focus** if there exists $\delta > 0$ such that $0 < r_0 < \delta$ and $\theta_0 \in \mathbb{R}$ imply $r(t, r_0, \theta_0) \to (0, 0)$ and $|\theta(t, r_0, \theta_0)| \to \infty$ as $t \to \infty$. It is an **unstable focus** if the same holds as $t \to -\infty$.

The origin is a **stable node** if there exists $\delta > 0$ such that for $0 < r_0 < \delta$ and $\theta_0 \in \mathbb{R}$, we have $r(t, r_0, \theta_0) \to (0, 0)$ as $t \to \infty$ and $\lim_{t \to \infty} \theta(t, r_0, \theta_0)$ exists. In other words, the trajectories approach the origin with a well-defined tangent. It's an **unstable node** if the same holds with $t \to -\infty$. A node is called *proper* if every ray through the origin is tangent to some trajectory.

- The origin is a **stable node** if there exists $\delta > 0$ such that for $0 < r_0 < \delta$ and $\theta_0 \in \mathbb{R}$, we have $r(t, r_0, \theta_0) \to (0, 0)$ as $t \to \infty$ and $\lim_{t \to \infty} \theta(t, r_0, \theta_0)$ exists. In other words, the trajectories approach the origin with a well-defined tangent. It's an **unstable node** if the same holds with $t \to -\infty$. A node is called *proper* if every ray through the origin is tangent to some trajectory.
- The origin is a topological saddle if it is locally homeomorphic to a saddle for a linear system.

- The origin is a **stable node** if there exists $\delta > 0$ such that for $0 < r_0 < \delta$ and $\theta_0 \in \mathbb{R}$, we have $r(t, r_0, \theta_0) \to (0, 0)$ as $t \to \infty$ and $\lim_{t \to \infty} \theta(t, r_0, \theta_0)$ exists. In other words, the trajectories approach the origin with a well-defined tangent. It's an **unstable node** if the same holds with $t \to -\infty$. A node is called *proper* if every ray through the origin is tangent to some trajectory.
- The origin is a topological saddle if it is locally homeomorphic to a saddle for a linear system.
- The origin is a **center-focus** if there exists a sequence of closed solution curves Γ_n with Γ_{n+1} in the interior of Γ_n such that $\Gamma_k \to (0,0)$ as $k \to \infty$ and such that every solution with initial condition between Γ_n and Γ_{n+1} spirals toward either Γ_n or Γ_{n+1} as $t \to \pm \infty$.

Example of a center focus

$$x' = -y + x\sqrt{x^2 + y^2} \sin\left(\frac{1}{\sqrt{x^2 + y^2}}\right)$$
$$y' = x + y\sqrt{x^2 + y^2} \sin\left(\frac{1}{\sqrt{x^2 + y^2}}\right).$$

Example of a center focus

$$x' = -y + x\sqrt{x^2 + y^2} \sin\left(\frac{1}{\sqrt{x^2 + y^2}}\right)$$
$$y' = x + y\sqrt{x^2 + y^2} \sin\left(\frac{1}{\sqrt{x^2 + y^2}}\right).$$

In polar coordinates:

$$r' = r^2 \sin\left(\frac{1}{r}\right)$$
$$\theta' = 1$$

for r > 0, and r' = 0 for r = 0.

Example of a center focus

LINEARIZED	NONLINEAR
saddle	saddle

LINEARIZED	NONLINEAR
saddle	saddle
center	center, focus, center-focus

LINEARIZED	NONLINEAR
saddle	saddle
center	center, focus, center-focus
center	center, focus in analytic case

LINEARIZED	NONLINEAR
saddle	saddle
center	center, focus, center-focus
center	center, focus in analytic case
node	node or focus

LINEARIZED	NONLINEAR
saddle	saddle
center	center, focus, center-focus
center	center, focus in analytic case
node	node or focus
node	node in C^2 case

LINEARIZED	NONLINEAR
saddle	saddle
center	center, focus, center-focus
center	center, focus in analytic case
node	node or focus
node	node in C^2 case
focus	node or focus

saddle saddle center center, focus, center-focus center center, focus in analytic case	LINEARIZED	NONLINEAR
	saddle	saddle
center center, focus in analytic case	center	center, focus, center-focus
	center	center, focus in analytic case
node node or focus	node	node or focus
node node in C^2 case	node	node in C^2 case
focus node or focus	focus	node or focus
focus focus in C^2 case	focus	focus in C^2 case

LINEARIZED	NONLINEAR
saddle	saddle
center	center, focus, center-focus
center	center, focus in analytic case
node	node or focus
node	node in C^2 case
focus	node or focus
focus	focus in C^2 case

See course homepage for Perron's example of a node that turns into a focus upon the addition of non-linear terms:

$$x' = -x - \frac{y}{\log \sqrt{x^2 + y^2}}$$
$$y' = -y + \frac{x}{\log \sqrt{x^2 + y^2}}$$

Suppose the linearized system at x_0 is nonzero, and x_0 is non-hyperbolic. The only new possibilities are (see Perko):

Suppose the linearized system at x_0 is nonzero, and x_0 is non-hyperbolic. The only new possibilities are (see Perko):

▶ saddle-nodes (two hyperbolic sectors, one parabolic sector)

Suppose the linearized system at x_0 is nonzero, and x_0 is non-hyperbolic. The only new possibilities are (see Perko):

- **saddle-nodes** (two hyperbolic sectors, one parabolic sector)
- critical points with elliptic domains (one elliptic sector, one hyperbolic sector, two parabolic sectors, four separatrices)

Suppose the linearized system at x_0 is nonzero, and x_0 is non-hyperbolic. The only new possibilities are (see Perko):

- **saddle-nodes** (two hyperbolic sectors, one parabolic sector)
- critical points with elliptic domains (one elliptic sector, one hyperbolic sector, two parabolic sectors, four separatrices)
- **cusps** (two hyperbolic sectors, two separatrices):