Math 322

March 28, 2022

Definition. An equilibrium point x_0 for a system x'=f(x) is *stable* if for each open neighborhood U of x_0 , there exists another open neighborhood W of x_0 such that if $p \in W$, then $\phi(t,p) \in U$ for all $t \geq 0$.

Definition. An equilibrium point x_0 for a system x' = f(x) is *stable* if for each open neighborhood U of x_0 , there exists another open neighborhood W of x_0 such that if $p \in W$, then $\phi(t,p) \in U$ for all $t \geq 0$. Otherwise, x_0 is *unstable*.

Definition. An equilibrium point x_0 for a system x' = f(x) is *stable* if for each open neighborhood U of x_0 , there exists another open neighborhood W of x_0 such that if $p \in W$, then $\phi(t,p) \in U$ for all $t \geq 0$. Otherwise, x_0 is *unstable*.

Definition. An equilibrium point x_0 for a system x' = f(x) is *stable* if for each open neighborhood U of x_0 , there exists another open neighborhood W of x_0 such that if $p \in W$, then $\phi(t,p) \in U$ for all $t \geq 0$. Otherwise, x_0 is *unstable*.

We say x_0 is asymptotically stable if it has an open neighborhood W such that $\lim_{t\to\infty}\phi_t(p)=x_0$ for all $p\in W$.

1. Both unstable and asymptotically stable is possible!

Definition. An equilibrium point x_0 for a system x' = f(x) is *stable* if for each open neighborhood U of x_0 , there exists another open neighborhood W of x_0 such that if $p \in W$, then $\phi(t,p) \in U$ for all $t \geq 0$. Otherwise, x_0 is *unstable*.

- 1. Both unstable and asymptotically stable is possible!
- 2. (Hartman-Grobman) Say x_0 is a hyperbolic equilibrium point.

Definition. An equilibrium point x_0 for a system x' = f(x) is *stable* if for each open neighborhood U of x_0 , there exists another open neighborhood W of x_0 such that if $p \in W$, then $\phi(t,p) \in U$ for all $t \geq 0$. Otherwise, x_0 is *unstable*.

- 1. Both unstable and asymptotically stable is possible!
- 2. (Hartman-Grobman) Say x_0 is a hyperbolic equilibrium point. If all eigenvalues of Df_{x_0} have negative real part, then x_0 is stable and asymptotically stable, and the approach of a trajectory to x_0 is exponential in time.

Definition. An equilibrium point x_0 for a system x' = f(x) is *stable* if for each open neighborhood U of x_0 , there exists another open neighborhood W of x_0 such that if $p \in W$, then $\phi(t,p) \in U$ for all $t \geq 0$. Otherwise, x_0 is *unstable*.

- 1. Both unstable and asymptotically stable is possible!
- 2. (Hartman-Grobman) Say x_0 is a hyperbolic equilibrium point. If all eigenvalues of Df_{x_0} have negative real part, then x_0 is stable and asymptotically stable, and the approach of a trajectory to x_0 is exponential in time. Otherwise, some eigenvalue has positive real part, and x_0 is unstable.

Definition. An equilibrium point x_0 for a system x' = f(x) is *stable* if for each open neighborhood U of x_0 , there exists another open neighborhood W of x_0 such that if $p \in W$, then $\phi(t,p) \in U$ for all $t \geq 0$. Otherwise, x_0 is *unstable*.

- 1. Both unstable and asymptotically stable is possible!
- 2. (Hartman-Grobman) Say x_0 is a hyperbolic equilibrium point. If all eigenvalues of Df_{x_0} have negative real part, then x_0 is stable and asymptotically stable, and the approach of a trajectory to x_0 is exponential in time. Otherwise, some eigenvalue has positive real part, and x_0 is unstable.
- 3. In any case, if an equilibrium point x_0 is stable, then no eigenvalue of Df_{x_0} has positive real part (even in the non-hyperbolic case).

Let $f: E \to \mathbb{R}^n$ be C^1 , and consider the system x' = f(x) with equilibrium point $x_0 \in E$.

Let $f: E \to \mathbb{R}^n$ be C^1 , and consider the system x' = f(x) with equilibrium point $x_0 \in E$. A Liapunov function for x_0 is a C^1 function $V: E \to \mathbb{R}$ such that $V(p) \ge 0$ for all $p \in E$ and V(p) = 0 iff $p = x_0$.

Let $f: E \to \mathbb{R}^n$ be C^1 , and consider the system x' = f(x) with equilibrium point $x_0 \in E$. A Liapunov function for x_0 is a C^1 function $V: E \to \mathbb{R}$ such that $V(p) \ge 0$ for all $p \in E$ and V(p) = 0 iff $p = x_0$.

Define
$$\dot{V}(p) = \frac{d}{dt}V(\phi_t(p))\bigg|_{t=0}$$
.

Let $f: E \to \mathbb{R}^n$ be C^1 , and consider the system x' = f(x) with equilibrium point $x_0 \in E$. A Liapunov function for x_0 is a C^1 function $V: E \to \mathbb{R}$ such that $V(p) \ge 0$ for all $p \in E$ and V(p) = 0 iff $p = x_0$.

Define
$$\dot{V}(p) = \frac{d}{dt}V(\phi_t(p))igg|_{t=0}$$
.

Then,
$$\dot{V}(p) = \nabla V(p) \cdot f(p)$$
.

Let $f: E \to \mathbb{R}^n$ be C^1 , and consider the system x' = f(x) with equilibrium point $x_0 \in E$. A Liapunov function for x_0 is a C^1 function $V: E \to \mathbb{R}$ such that $V(p) \ge 0$ for all $p \in E$ and V(p) = 0 iff $p = x_0$.

Define
$$\dot{V}(p) = \frac{d}{dt}V(\phi_t(p))\Big|_{t=0}$$
.

Then, $\dot{V}(p) = \nabla V(p) \cdot f(p)$. (So $\dot{V}(p)$ can be calculated without computing trajectories!)

Let $f: E \to \mathbb{R}^n$ be C^1 , and consider the system x' = f(x) with equilibrium point $x_0 \in E$. A Liapunov function for x_0 is a C^1 function $V: E \to \mathbb{R}$ such that $V(p) \ge 0$ for all $p \in E$ and V(p) = 0 iff $p = x_0$.

Define
$$\dot{V}(p) = \frac{d}{dt}V(\phi_t(p))\Big|_{t=0}$$
.

Then, $\dot{V}(p) = \nabla V(p) \cdot f(p)$. (So $\dot{V}(p)$ can be calculated without computing trajectories!)

Proof . . .

Liapunov function example

Consider

$$x' = -y^3$$
$$y' = x^3$$

with equilibrium point (0,0).

Liapunov function example

Consider

$$x' = -y^3$$
$$y' = x^3$$

with equilibrium point (0,0).

A Liapunov function:

$$V(x,y) = x^4 + y^4.$$

Liapunov function example

Consider

$$x' = -y^3$$
$$y' = x^3$$

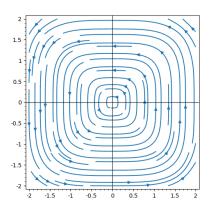
with equilibrium point (0,0).

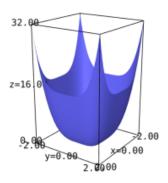
A Liapunov function:

$$V(x,y) = x^4 + y^4.$$

Check that trajectories sit on level sets for V.

Example, continued





Theorem. Let $f \in C^1(E)$ and $f(x_0) = 0$. Let $V : E \to \mathbb{R}$ also be C^1 (continuously differentiable). Suppose that $V(p) \ge 0$ and V(p) = 0 if and only if $p = x_0$.

Theorem. Let $f \in C^1(E)$ and $f(x_0) = 0$. Let $V : E \to \mathbb{R}$ also be C^1 (continuously differentiable). Suppose that $V(p) \ge 0$ and V(p) = 0 if and only if $p = x_0$. Then:

1. If \dot{V} is negative semidefinite $(\dot{V}(p) \leq 0 \text{ for all } p \in E \setminus \{x_0\})$ then x_0 is stable.

Theorem. Let $f \in C^1(E)$ and $f(x_0) = 0$. Let $V : E \to \mathbb{R}$ also be C^1 (continuously differentiable). Suppose that $V(p) \geq 0$ and V(p) = 0 if and only if $p = x_0$. Then:

- 1. If \dot{V} is negative semidefinite $(\dot{V}(p) \leq 0 \text{ for all } p \in E \setminus \{x_0\})$ then x_0 is stable.
- 2. If \dot{V} is negative definite $(\dot{V}(p) < 0 \text{ for all } p \in E \setminus \{x_0\})$ then x_0 is asymptotically stable.

Theorem. Let $f \in C^1(E)$ and $f(x_0) = 0$. Let $V : E \to \mathbb{R}$ also be C^1 (continuously differentiable). Suppose that $V(p) \geq 0$ and V(p) = 0 if and only if $p = x_0$. Then:

- 1. If \dot{V} is negative semidefinite $(\dot{V}(p) \leq 0 \text{ for all } p \in E \setminus \{x_0\})$ then x_0 is stable.
- 2. If \dot{V} is negative definite $(\dot{V}(p) < 0 \text{ for all } p \in E \setminus \{x_0\})$ then x_0 is asymptotically stable.
- 3. If \dot{V} is positive definite $(\dot{V}(p) > 0 \text{ for all } p \in E \setminus \{x_0\})$, then x_0 is unstable.