Math 322

April 1, 2022

Statistics search job talk

Eli Wolff, University of Oregon

Two-Dimensional Electrostatics and Universality in Random Matrix Theory

4:45-5:35 Thursday, E314

$$a_1x^2 + a_2xy + a_3x + a_4y^2 + a_5y + a_6 = 0$$

$$a_1x^2 + a_2xy + a_3x + a_4y^2 + a_5y + a_6 = 0$$

$$a_1x^2 + a_2xy + a_3xz + a_4y^2 + a_5yz + a_6z^2 = 0$$

$$a_1x^2 + a_2xy + a_3x + a_4y^2 + a_5y + a_6 = 0$$

$$a_1x^2 + a_2xy + a_3xz + a_4y^2 + a_5yz + a_6z^2 = 0$$

$$\lambda a_1 x^2 + \lambda a_2 xy + \lambda a_3 xz + \lambda a_4 y^2 + \lambda a_5 yz + \lambda a_6 z^2 = 0$$

$$a_1x^2 + a_2xy + a_3x + a_4y^2 + a_5y + a_6 = 0$$

$$a_1x^2 + a_2xy + a_3xz + a_4y^2 + a_5yz + a_6z^2 = 0$$

$$\lambda a_1x^2 + \lambda a_2xy + \lambda a_3xz + \lambda a_4y^2 + \lambda a_5yz + \lambda a_6z^2 = 0$$

$$(a_1, a_2, a_3, a_4, a_5, a_6) \in \mathbb{P}^5$$

$$\begin{aligned} a_1x^2 + a_2xy + a_3x + a_4y^2 + a_5y + a_6 &= 0 \\ a_1x^2 + a_2xy + a_3xz + a_4y^2 + a_5yz + a_6z^2 &= 0 \\ \lambda a_1x^2 + \lambda a_2xy + \lambda a_3xz + \lambda a_4y^2 + \lambda a_5yz + \lambda a_6z^2 &= 0 \\ (a_1, a_2, a_3, a_4, a_5, a_6) &\in \mathbb{P}^5 \\ &\{ \mathsf{conics} \} &= \mathbb{P}^5 \end{aligned}$$

Stability of equilibrium point

Definition. An equilibrium point x_0 for a system x' = f(x) is *stable* if for each open neighborhood U of x_0 , there exists another open neighborhood W of x_0 such that if $p \in W$, then $\phi(t,p) \in U$ for all t > 0.

Stability of equilibrium point

Definition. An equilibrium point x_0 for a system x' = f(x) is *stable* if for each open neighborhood U of x_0 , there exists another open neighborhood W of x_0 such that if $p \in W$, then $\phi(t,p) \in U$ for all $t \geq 0$. Otherwise, x_0 is *unstable*.

Stability of equilibrium point

Definition. An equilibrium point x_0 for a system x' = f(x) is *stable* if for each open neighborhood U of x_0 , there exists another open neighborhood W of x_0 such that if $p \in W$, then $\phi(t,p) \in U$ for all $t \geq 0$. Otherwise, x_0 is *unstable*.

We say x_0 is asymptotically stable if it has an open neighborhood W such that $\lim_{t\to\infty}\phi_t(p)=x_0$ for all $p\in W$.

Theorem. Let $f \in C^1(E)$ and $f(x_0) = 0$. Let $V : E \to \mathbb{R}$ also be C^1 (continuously differentiable). Suppose that $V(p) \ge 0$ and V(p) = 0 if and only if $p = x_0$.

Theorem. Let $f \in C^1(E)$ and $f(x_0) = 0$. Let $V : E \to \mathbb{R}$ also be C^1 (continuously differentiable). Suppose that $V(p) \ge 0$ and V(p) = 0 if and only if $p = x_0$. Then:

1. If \dot{V} is negative semidefinite $(\dot{V}(p) \leq 0 \text{ for all } p \in E \setminus \{x_0\})$ then x_0 is stable.

Theorem. Let $f \in C^1(E)$ and $f(x_0) = 0$. Let $V : E \to \mathbb{R}$ also be C^1 (continuously differentiable). Suppose that $V(p) \ge 0$ and V(p) = 0 if and only if $p = x_0$. Then:

- 1. If \dot{V} is negative semidefinite $(\dot{V}(p) \leq 0 \text{ for all } p \in E \setminus \{x_0\})$ then x_0 is stable.
- 2. If \dot{V} is negative definite $(\dot{V}(p) < 0 \text{ for all } p \in E \setminus \{x_0\})$ then x_0 is asymptotically stable.

Theorem. Let $f \in C^1(E)$ and $f(x_0) = 0$. Let $V : E \to \mathbb{R}$ also be C^1 (continuously differentiable). Suppose that $V(p) \ge 0$ and V(p) = 0 if and only if $p = x_0$. Then:

- 1. If \dot{V} is negative semidefinite $(\dot{V}(p) \leq 0 \text{ for all } p \in E \setminus \{x_0\})$ then x_0 is stable.
- 2. If \dot{V} is negative definite $(\dot{V}(p) < 0 \text{ for all } p \in E \setminus \{x_0\})$ then x_0 is asymptotically stable.
- 3. If \dot{V} is positive definite $(\dot{V}(p) > 0 \text{ for all } p \in E \setminus \{x_0\})$, then x_0 is unstable.

$$x' = -2y + yz$$
$$y' = x - xz$$
$$z' = xy$$

$$x' = -2y + yz$$
$$y' = x - xz$$
$$z' = xy$$

eigenvalues $=0,\pm\sqrt{2}i$ (origin is nonhyperbolic equilibrium point)

$$x' = -2y + yz$$
$$y' = x - xz$$
$$z' = xy$$

eigenvalues $=0,\pm\sqrt{2}i$ (origin is nonhyperbolic equilibrium point)

$$x' = -2y + yz$$
$$y' = x - xz$$
$$z' = xy$$

eigenvalues $=0,\pm\sqrt{2}i$ (origin is nonhyperbolic equilibrium point)

$$\dot{V} = 2axx' + 2byy' + 2czz'$$

$$x' = -2y + yz$$
$$y' = x - xz$$
$$z' = xy$$

eigenvalues $=0,\pm\sqrt{2}i$ (origin is nonhyperbolic equilibrium point)

$$\dot{V} = 2axx' + 2byy' + 2czz'$$

$$= 2ax(-2y + yz) + 2by(x - xz) + 2cz(xy)$$

$$x' = -2y + yz$$
$$y' = x - xz$$
$$z' = xy$$

eigenvalues $=0,\pm\sqrt{2}i$ (origin is nonhyperbolic equilibrium point)

$$\dot{V} = 2axx' + 2byy' + 2czz'$$
= $2ax(-2y + yz) + 2by(x - xz) + 2cz(xy)$
= $2(-2a + b)xy + (a - b + c)xyz$.

$$x' = -2y + yz$$
$$y' = x - xz$$
$$z' = xy$$

eigenvalues $=0,\pm\sqrt{2}i$ (origin is nonhyperbolic equilibrium point)

Look for Liapunov function of the form $V = ax^2 + by^2 + cz^2$:

$$\dot{V} = 2axx' + 2byy' + 2czz'$$
= $2ax(-2y + yz) + 2by(x - xz) + 2cz(xy)$
= $2(-2a + b)xy + (a - b + c)xyz$.

Take a = c = 1 and b = 2.

$$x' = -2y + yz$$
$$y' = x - xz$$
$$z' = xy$$

eigenvalues $=0,\pm\sqrt{2}i$ (origin is nonhyperbolic equilibrium point)

Look for Liapunov function of the form $V = ax^2 + by^2 + cz^2$:

$$\dot{V} = 2axx' + 2byy' + 2czz'$$
= $2ax(-2y + yz) + 2by(x - xz) + 2cz(xy)$
= $2(-2a + b)xy + (a - b + c)xyz$.

Take a = c = 1 and b = 2. (Sage demo)