


During break

» Think about projects.
» Homework due on Monday, March 28.
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Stable manifold theorem

Theorem. f € C1(E), f(0) =0,

Dfy:  k eigenvalues with negative real part and n — k eigenvalues
with positive real part.

3 k-dimensional differentiable manifold S tangent to the stable
subspace E® of the linearized system x’ = Dfy(x) at 0

and 3 (n — k)-dimensional differentiable manifold U tangent to the
unstable space EY of the linearized system

such that
Jim 0x(p) =0
for any p € S and
lim ¢(p) =0
t——00

for any p € U.
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Global stable and unstable manifolds

Define
W*(0) := Ur<o¢¢(S)

and
W*(0) := Ur>00¢(U).

These manifolds (i) do not depend on our choice of local stable
and unstable manifolds S and U, (ii) are invariant under ¢;, and
(iii) for all p € W*(0),

t'i[g()@(ﬁ’) =0
and for all p € W¥(0),
lim ¢:(p) = 0.

t——0o0
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Center manifold theorem

Theorem. f € C1(E), f(0) =0,

Dfy: k eigenvalues with negative real part, j eigenvalues with
positive real part, and n — k — j eigenvalues with zero real part

In addition to the global stable and unstable manifolds, there also
exists a global center manifold tangent to the center space of the
linearized system and invariant under flow.
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Hartman-Grobman theorem

f € CL(E), f(0) =0, Jf(0) has k eigenvalues with positive real
part and n — k with negative real part (i.e., the origin is a
hyperbolic equilibrium point for the system)

Theorem. There exist neighborhoods of the origin U and V and a
homeomorphism H: U — V such that for all xg € U, there is an
interval I containing the origin and

H(¢(x0)) = e’ Ot H(xp).

Proof. Successive approximations. See text.
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Example

/
X = —X

Y =y+x
Solution with initial condition (xo, yo):

x(t) = xge~ "

1 1
y(t) = ()/0 + 3X§) et — gxge_zt.

Homeomorphism:

15

H(x,y) = (x,y+3x>.

Check that H preserves solutions and the (un)stable manifolds.
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