Math 322

March 11, 2022

Theorem. Let E be an open subset of \mathbb{R}^{n+m} containing the point (x_0, μ_0) where $x_0 \in \mathbb{R}^n$ and $\mu_0 \in \mathbb{R}^m$, and assume $f \in C^1(E)$.

 $^{^{1}\}text{A}$ *neighborhood* of a point is any set that contains an open set containing the point.

Theorem. Let E be an open subset of \mathbb{R}^{n+m} containing the point (x_0, μ_0) where $x_0 \in \mathbb{R}^n$ and $\mu_0 \in \mathbb{R}^m$, and assume $f \in C^1(E)$. Then there is a neighborhood $N(x_0) \subseteq \mathbb{R}^n$ of x_0 ,

 $^{^{1}\}text{A}$ neighborhood of a point is any set that contains an open set containing the point.

Theorem. Let E be an open subset of \mathbb{R}^{n+m} containing the point (x_0, μ_0) where $x_0 \in \mathbb{R}^n$ and $\mu_0 \in \mathbb{R}^m$, and assume $f \in C^1(E)$. Then there is a neighborhood $N(x_0) \subseteq \mathbb{R}^n$ of x_0 , a neighborhood $N(\mu_0) \subseteq \mathbb{R}^m$ of μ_0 ,

 $^{^{1}\}text{A}$ *neighborhood* of a point is any set that contains an open set containing the point.

Theorem. Let E be an open subset of \mathbb{R}^{n+m} containing the point (x_0, μ_0) where $x_0 \in \mathbb{R}^n$ and $\mu_0 \in \mathbb{R}^m$, and assume $f \in C^1(E)$. Then there is a neighborhood $N(x_0) \subseteq \mathbb{R}^n$ of x_0 , a neighborhood $N(\mu_0) \subseteq \mathbb{R}^m$ of μ_0 , and an a > 0 such that for all $y \in N(x_0)$ and for all $\mu \in N(\mu_0)$,

 $^{^{1}\}text{A}$ *neighborhood* of a point is any set that contains an open set containing the point.

Theorem. Let E be an open subset of \mathbb{R}^{n+m} containing the point (x_0, μ_0) where $x_0 \in \mathbb{R}^n$ and $\mu_0 \in \mathbb{R}^m$, and assume $f \in C^1(E)$. Then there is a neighborhood $N(x_0) \subseteq \mathbb{R}^n$ of x_0 , a neighborhood $N(\mu_0) \subseteq \mathbb{R}^m$ of μ_0 , and an a > 0 such that for all $y \in N(x_0)$ and for all $\mu \in N(\mu_0)$, the initial value problem

$$x' = f(x, \mu)$$
$$x(0) = y$$

has a unique solution $x = x(t, y, \mu)$ with $x \in C^1(R)$ where $R := [-a, a] \times N(x_0) \times N(\mu_0)$.

¹A *neighborhood* of a point is any set that contains an open set containing the point.

Theorem. Consider our initial value problem with $f \in C^1(E)$ and initial condition x_0 .

Theorem. Consider our initial value problem with $f \in C^1(E)$ and initial condition x_0 . There is an interval $J = (\alpha, \beta)$ with $\alpha, \beta \in \mathbb{R} \cup \{\pm \infty\}$

Theorem. Consider our initial value problem with $f \in C^1(E)$ and initial condition x_0 . There is an interval $J = (\alpha, \beta)$ with $\alpha, \beta \in \mathbb{R} \cup \{\pm \infty\}$ and a solution x(t) defined for $t \in J$

Theorem. Consider our initial value problem with $f \in C^1(E)$ and initial condition x_0 . There is an interval $J = (\alpha, \beta)$ with $\alpha, \beta \in \mathbb{R} \cup \{\pm \infty\}$ and a solution x(t) defined for $t \in J$ such that if y(t) is any other solution defined on an interval I, then $I \subseteq J$ and x(t) = y(t) on I.

Theorem. Consider our initial value problem with $f \in C^1(E)$ and initial condition x_0 . There is an interval $J = (\alpha, \beta)$ with $\alpha, \beta \in \mathbb{R} \cup \{\pm \infty\}$ and a solution x(t) defined for $t \in J$ such that if y(t) is any other solution defined on an interval I, then $I \subseteq J$ and x(t) = y(t) on I. Further, if $\beta \in \mathbb{R}$, i.e., if $\beta \neq \infty$, then given any compact (closed and bounded) subset $K \subset E$, then there exists $t \in J$ such that $x(t) \notin K$.

Stable manifold theorem

Theorem. (Stable manifold theorem.) Let $E \subseteq \mathbb{R}^n$ and let $f \in C^1(E)$. Suppose that f(0) = 0 and that Df_0 has k eigenvalues with negative real part and n - k eigenvalues with positive real part.

Stable manifold theorem

Theorem. (Stable manifold theorem.) Let $E \subseteq \mathbb{R}^n$ and let $f \in C^1(E)$. Suppose that f(0) = 0 and that Df_0 has k eigenvalues with negative real part and n - k eigenvalues with positive real part.

Then there exists a k-dimensional differentiable manifold S tangent to the stable subspace E^s of the linearized system $x' = Df_0(x)$ at 0, and there exists an (n-k)-dimensional differentiable manifold U tangent to the unstable space E^u of the linearized system

Stable manifold theorem

Theorem. (Stable manifold theorem.) Let $E \subseteq \mathbb{R}^n$ and let $f \in C^1(E)$. Suppose that f(0) = 0 and that Df_0 has k eigenvalues with negative real part and n - k eigenvalues with positive real part.

Then there exists a k-dimensional differentiable manifold S tangent to the stable subspace E^s of the linearized system $x' = Df_0(x)$ at 0, and there exists an (n-k)-dimensional differentiable manifold U tangent to the unstable space E^u of the linearized system with the properties

$$\lim_{t\to\infty}\phi_t(x_0)=0$$

for any $x_0 \in S$ and

$$\lim_{t\to -\infty} \phi(x_0) = 0$$

for any $x_0 \in U$.

 $I(x_0)$: maximal interval of existence for initial condition x_0

 $I(x_0)$: maximal interval of existence for initial condition x_0

$$\Omega := \{(t, x_0) \in \mathbb{R} \times E : t \in I(x_0)\}$$

 $I(x_0)$: maximal interval of existence for initial condition x_0

$$\Omega := \{(t,x_0) \in \mathbb{R} \times E : t \in I(x_0)\}$$

 $\phi(t, x_0)$: solution with initial condition x_0 .

 $I(x_0)$: maximal interval of existence for initial condition x_0

$$\Omega := \{(t, x_0) \in \mathbb{R} \times E : t \in I(x_0)\}$$

 $\phi(t, x_0)$: solution with initial condition x_0 .

$$\phi \colon \Omega \to \mathbb{R}^n$$

$$(t, x_0) \mapsto \phi(t, x_0) =: \phi_t(x_0)$$

 $I(x_0)$: maximal interval of existence for initial condition x_0

$$\Omega := \{(t, x_0) \in \mathbb{R} \times E : t \in I(x_0)\}$$

 $\phi(t, x_0)$: solution with initial condition x_0 .

$$\phi \colon \Omega \to \mathbb{R}^n$$
$$(t, x_0) \mapsto \phi(t, x_0) =: \phi_t(x_0)$$

Properties:

(i)
$$\phi_0(x_0) = x_0$$

 $I(x_0)$: maximal interval of existence for initial condition x_0

$$\Omega := \{(t, x_0) \in \mathbb{R} \times E : t \in I(x_0)\}$$

 $\phi(t, x_0)$: solution with initial condition x_0 .

$$\phi \colon \Omega \to \mathbb{R}^n$$
$$(t, x_0) \mapsto \phi(t, x_0) =: \phi_t(x_0)$$

Properties:

(i)
$$\phi_0(x_0) = x_0$$
 (ii) $\phi_s(\phi_t(x_0)) = \phi_{s+t}(x_0)$

 $I(x_0)$: maximal interval of existence for initial condition x_0

$$\Omega := \{(t, x_0) \in \mathbb{R} \times E : t \in I(x_0)\}$$

 $\phi(t, x_0)$: solution with initial condition x_0 .

$$\phi \colon \Omega \to \mathbb{R}^n$$

$$(t, x_0) \mapsto \phi(t, x_0) =: \phi_t(x_0)$$

Properties:

(i)
$$\phi_0(x_0) = x_0$$
 (ii) $\phi_s(\phi_t(x_0)) = \phi_{s+t}(x_0)$ (iii) $\phi_{-t}(\phi_t(x_0)) = x_0$

Metric space

Definition. A metric space is a set X with a distance function or metric,

$$d: X \times X \rightarrow \mathbb{R}$$

that is positive definite, symmetric, and obeys the triangle inequality:

- 1. $d(x,y) \ge 0$ with d(x,y) = 0 if and only if x = y
- 2. d(x, y) = d(y, x)
- 3. $d(x,y) \le d(x,z) + d(z,y)$.

Metric space

Definition. A metric space is a set X with a distance function or metric,

$$d: X \times X \rightarrow \mathbb{R}$$

that is positive definite, symmetric, and obeys the triangle inequality:

- 1. $d(x,y) \ge 0$ with d(x,y) = 0 if and only if x = y
- 2. d(x, y) = d(y, x)
- 3. $d(x,y) \le d(x,z) + d(z,y)$.

Every metric space (X, d) is a topological space where a subset $U \subseteq X$ is *open* if for each $u \in U$, there exists r > 0 such that the open ball of radius r centered at u is contained in U:

$$B(u,r) := \{x \in X : d(u,x) < r\} \subseteq U.$$

Definition. An *n*-dimensional differentiable manifold is a connected metric space² M and an open covering $\{U_{\alpha}\}$ (so for each α in some index set, U_{α} is an open subset of M and $M = \bigcup_{\alpha} U_{\alpha}$) such that:

 $^{^2}$ More generally, M could be a second-countable Hausdorff toplogical space.

Definition. An n-dimensional differentiable manifold is a connected metric space² M and an open covering $\{U_{\alpha}\}$ (so for each α in some index set, U_{α} is an open subset of M and $M = \cup_{\alpha} U_{\alpha}$) such that:

1. for all α , there is a homeomorphism

$$h_{\alpha}\colon U_{\alpha}\to V_{\alpha}$$

where V_{α} is an open subset of \mathbb{R}^n , and

 $^{^{2}}$ More generally, M could be a second-countable Hausdorff toplogical space.

Definition. An n-dimensional differentiable manifold is a connected metric space² M and an open covering $\{U_{\alpha}\}$ (so for each α in some index set, U_{α} is an open subset of M and $M = \cup_{\alpha} U_{\alpha}$) such that:

1. for all α , there is a homeomorphism

$$h_{\alpha}\colon U_{\alpha}\to V_{\alpha}$$

where V_{α} is an open subset of \mathbb{R}^{n} , and

2. if $U_{\alpha} \cap U_{\beta} \neq \emptyset$, the mapping

$$h_{eta} \circ h_{lpha}^{-1} \colon h_{lpha}(U_{lpha} \cap U_{eta}) o h_{eta}(U_{lpha} \cap U_{eta})$$

is continuously differentiable.

 $^{^2}$ More generally, M could be a second-countable Hausdorff toplogical space.

Definition. An *n*-dimensional differentiable manifold is a connected metric space² M and an open covering $\{U_{\alpha}\}$ (so for each α in some index set, U_{α} is an open subset of M and $M = \bigcup_{\alpha} U_{\alpha}$) such that:

1. for all α , there is a homeomorphism

$$h_{\alpha}\colon U_{\alpha}\to V_{\alpha}$$

where V_{α} is an open subset of \mathbb{R}^n , and

2. if $U_{\alpha} \cap U_{\beta} \neq \emptyset$, the mapping

$$h_{\beta} \circ h_{\alpha}^{-1} \colon h_{\alpha}(U_{\alpha} \cap U_{\beta}) \to h_{\beta}(U_{\alpha} \cap U_{\beta})$$

is continuously differentiable.

Each pair (h_{α}, U_{α}) is called a *chart*, and the collection of charts is called an *atlas*. The mapping $h_{\beta} \cap h_{\alpha}^{-1}$ are *transition functions*.

 $^{^{2}}$ More generally, M could be a second-countable Hausdorff toplogical space.