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Dependence on parameters

Theorem. Let E be an open subset of R"™™ containing the point
(x0, tto) where xo € R" and o € R™, and assume f € CY(E).
Then there is a neighborhood! N(xp) C R” of xg, a neighborhood
N(10) € R™ of ug, and an a > 0 such that for all y € N(xp) and
for all € N(uo), the initial value problem

x' = f(x,u)
x(0) =y

has a unique solution x = x(t,y, u) with x € C}(R) where
R :=[~a,a] x N(xo) x N(po)-

LA neighborhood of a point is any set that contains an open set containing
the point.
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Maximal interval of existence

Theorem. Consider our initial value problem with f € C1(E) and
initial condition xg. There is an interval J = («, 8) with

o, € RU{£oo} and a solution x(t) defined for t € J such that
if y(t) is any other solution defined on an interval /, then | C J
and x(t) = y(t) on I. Further, if 8 € R, i.e., if 5 # oo, then given
any compact (closed and bounded) subset K C E, then there
exists t € J such that x(t) ¢ K.
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Stable manifold theorem

Theorem. (Stable manifold theorem.) Let E C R" and

let £ € CY(E). Suppose that f(0) = 0 and that Dfy has k
eigenvalues with negative real part and n — k eigenvalues with
positive real part.

Then there exists a k-dimensional differentiable manifold S
tangent to the stable subspace E® of the linearized system

x" = Dfy(x) at 0, and there exists an (n — k)-dimensional
differentiable manifold U tangent to the unstable space EY of the
linearized system with the properties

Jim, 20) =0
for any xp € S and

lim ¢(x) =0

t——00

for any xo € U.
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Flow of a vector field

I(x0): maximal interval of existence for initial condition xg
Q:={(t,x) eRx E:tellx)}

¢(t, xp): solution with initial condition xp.

¢: Q2 —R"
(t,x0) = ¢(t, %) =: ¢t(x0)
Properties:

(i) do(x0) = x0 (i) ¢s(d:(x0)) = ¢ste(x0) (i) d—t(dt(x0)) = x0



Metric space

Definition. A metric space is a set X with a distance function or
metric,
d: XxX—=R

that is positive definite, symmetric, and obeys the triangle
inequality:

1. d(x,y) > 0 with d(x,y) =0 if and only if x =y

2. d(x,y) = d(y,x)

3. d(x,y) < d(x,z) + d(z,y).



Metric space

Definition. A metric space is a set X with a distance function or

metric,
d: X x X =R

that is positive definite, symmetric, and obeys the triangle
inequality:

1. d(x,y) > 0 with d(x,y) =0 if and only if x =y

2. d(x,y) = d(y,x)

3. d(x,y) < d(x,z) + d(z,y).

Every metric space (X, d) is a topological space where a
subset U C X is open if for each u € U, there exists r > 0 such
that the open ball of radius r centered at u is contained in U:

B(u,r) ={xe X :d(u,x)<r}CU.
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Manifold

Definition. An n-dimensional differentiable manifold is a
connected metric space? M and an open covering {U,} (so for
each « in some index set, U, is an open subset of M and

M = Uy U,) such that:

1. for all , there is a homeomorphism
ho: Uy — V,

where V,, is an open subset of R”, and
2. if Usa N Ug # 0, the mapping

hg o hyt: ho(Us N Ug) — ha(Us N Up)

is continuously differentiable.

Each pair (hy, Uy) is called a chart, and the collection of charts is
called an atlas. The mapping hg N h. ! are transition functions.

2More generally, M could be a second-countable Hausdorff toplogical space.



