Math 322

March 2, 2022

open subset $E \subseteq \mathbb{R}^n$

open subset $E\subseteq \mathbb{R}^n$ $f\in C(E)$, space of continuous functions $E\to \mathbb{R}^n$ (vector fields defined on E)

open subset $E \subseteq \mathbb{R}^n$

 $f \in C(E)$, space of continuous functions $E \to \mathbb{R}^n$ (vector fields defined on E)

Initial value problem: x' = f(x) with $x(t_0) = x_0 \in E$

open subset $E \subseteq \mathbb{R}^n$

$$f \in C(E)$$
, space of continuous functions $E \to \mathbb{R}^n$ (vector fields defined on E)

Initial value problem: x' = f(x) with $x(t_0) = x_0 \in E$

Solution: An interval I containing t_0

open subset $E \subseteq \mathbb{R}^n$

$$f \in C(E)$$
, space of continuous functions $E \to \mathbb{R}^n$ (vector fields defined on E)

Initial value problem: x' = f(x) with $x(t_0) = x_0 \in E$

Solution: An interval I containing t_0 and a parametrized curve $x \colon I \to E \subseteq \mathbb{R}^n$

open subset $E \subseteq \mathbb{R}^n$

$$f \in C(E)$$
, space of continuous functions $E \to \mathbb{R}^n$ (vector fields defined on E)

Initial value problem: x' = f(x) with $x(t_0) = x_0 \in E$

Solution: An interval I containing t_0 and a parametrized curve $x \colon I \to E \subseteq \mathbb{R}^n$ with x'(t) = f(x(t)) for all $t \in I$

open subset $E \subseteq \mathbb{R}^n$

$$f \in C(E)$$
, space of continuous functions $E \to \mathbb{R}^n$ (vector fields defined on E)

Initial value problem: x' = f(x) with $x(t_0) = x_0 \in E$

Solution: An interval I containing t_0 and a parametrized curve $x: I \to E \subseteq \mathbb{R}^n$ with x'(t) = f(x(t)) for all $t \in I$ and $x(t_0) = x_0$.

Converting non-autonomous systems

 $f: E \to \mathbb{R}^n$ is *autonomous*, i.e., f does not depend on t

Converting non-autonomous systems

 $f: E \to \mathbb{R}^n$ is *autonomous*, i.e., f does not depend on t

A non-autonomous system x' = g(x, t) can be converted into an autonomous system by letting $x_{n+1} = t$ and $x'_{n+1} = 1$.

${\sf Goals/Questions}$

Goals/Questions

► Find conditions under which the initial value problem has a unique solution.

Goals/Questions

- ► Find conditions under which the initial value problem has a unique solution.
- ▶ How do solutions change if *f* changes slightly?

Goals/Questions

- Find conditions under which the initial value problem has a unique solution.
- ▶ How do solutions change if *f* changes slightly?
- Consider the size of the interval on which the solution exists.

New behavior for non-linear systems

Solutions are no longer necessarily unique.

New behavior for non-linear systems

Solutions are no longer necessarily unique.

Solutions may not be defined on all of \mathbb{R} .

Key idea

We have solved the initial value problem x'(t) = f(x(t)) with $x(0) = x_0$ if we can find a continuous function x(t) satisfying

$$x(t) = x_0 + \int_{s=0}^{t} f(x(s)) ds$$

for all $t \in [-a, a]$ for some a > 0.

To solve
$$x'(t) = f(x(t))$$
 with $x(0) = x_0$,

To solve x'(t) = f(x(t)) with $x(0) = x_0$, create the sequence of functions

$$u_0 := x_0$$

 $u_{k+1} := x_0 + \int_{s=0}^t f(u_k(s)) ds$, for $k \ge 0$.

To solve x'(t) = f(x(t)) with $x(0) = x_0$, create the sequence of functions

$$u_0 := x_0$$

 $u_{k+1} := x_0 + \int_{s=0}^t f(u_k(s)) ds$, for $k \ge 0$.

Hope that $\lim_{n\to\infty} u_n = u(t)$ for some function u(t).

To solve x'(t) = f(x(t)) with $x(0) = x_0$, create the sequence of functions

$$u_0 := x_0$$

 $u_{k+1} := x_0 + \int_{s=0}^t f(u_k(s)) ds$, for $k \ge 0$.

Hope that $\lim_{n\to\infty} u_n = u(t)$ for some function u(t).

What happens when we take limits on both sides of the equation defining u_{k+1} ?

To solve x'(t) = f(x(t)) with $x(0) = x_0$,

To solve x'(t) = f(x(t)) with $x(0) = x_0$, create the sequence of functions

$$u_0(t) := x_0$$

 $u_{k+1}(t) := x_0 + \int_{s=0}^t f(u_k(s)) ds$, for $k \ge 0$.

To solve x'(t) = f(x(t)) with $x(0) = x_0$, create the sequence of functions

$$u_0(t) := x_0$$

$$u_{k+1}(t) := x_0 + \int_{s=0}^t f(u_k(s)) ds, \quad \text{for } k \ge 0.$$

Example. Apply the method to x' = xt, x(0) = 1.

To solve x'(t) = f(x(t)) with $x(0) = x_0$, create the sequence of functions

$$u_0(t) := x_0$$

 $u_{k+1}(t) := x_0 + \int_{s=0}^t f(u_k(s)) ds$, for $k \ge 0$.

Example. Apply the method to x' = xt, x(0) = 1.

First convert to an autonomous system via $x_1 = x$ and $x_2 = t$:

$$\begin{pmatrix} x_1' \\ x_2' \end{pmatrix} = \begin{pmatrix} x_1 x_2 \\ 1 \end{pmatrix} =: f(x_1, x_2)$$

with initial condition
$$\begin{pmatrix} x_1(0) \\ x_2(0) \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
.