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Non-linear systems

open subset E ⊆ Rn

f ∈ C(E ), space of continuous functions E → Rn

(vector fields defined on E )

Initial value problem: x ′ = f (x) with x(t0) = x0 ∈ E

Solution: An interval I containing t0 and a parametrized curve
x : I → E ⊆ Rn with x ′(t) = f (x(t)) for all t ∈ I and x(t0) = x0.
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Converting non-autonomous systems

f : E → Rn is autonomous, i.e., f does not depend on t

A non-autonomous system x ′ = g(x , t) can be converted into an
autonomous system by letting xn+1 = t and x ′

n+1 = 1.
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Goals/Questions

I Find conditions under which the initial value problem has a
unique solution.

I How do solutions change if f changes slightly?

I Consider the size of the interval on which the solution exists.
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Solutions are no longer necessarily unique.

Solutions may not be defined on all of R.



New behavior for non-linear systems

Solutions are no longer necessarily unique.

Solutions may not be defined on all of R.



New behavior for non-linear systems

Solutions are no longer necessarily unique.

Solutions may not be defined on all of R.



Key idea

We have solved the initial value problem x ′(t) = f (x(t))
with x(0) = x0 if we can find a continuous function x(t) satisfying

x(t) = x0 +
∫ t

s=0
f (x(s)) ds

for all t ∈ [−a, a] for some a > 0.



Method of successive approximations

To solve x ′(t) = f (x(t)) with x(0) = x0,

create the sequence of
functions

u0 := x0

uk+1 := x0 +
∫ t

s=0
f (uk(s)) ds, for k ≥ 0.

Hope that limn→∞ un = u(t) for some function u(t).

What happens when we take limits on both sides of the equation
defining uk+1?
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Example of method of successive approximations
To solve x ′(t) = f (x(t)) with x(0) = x0,

create the sequence of
functions

u0(t) := x0

uk+1(t) := x0 +
∫ t

s=0
f (uk(s)) ds, for k ≥ 0.

Example. Apply the method to x ′ = xt, x(0) = 1.

First convert to an autonomous system via x1 = x and x2 = t:(
x ′

1
x ′

2

)
=
(

x1x2
1

)
=: f (x1, x2)

with initial condition
(

x1(0)
x2(0)

)
=
(

1
0

)
.
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