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n-th order linear homogeneous equations revisited

Consider the equation
(n) (n=1) 4 ... ! —0 1
y' 4 an-1y +--F+ay +ay = (1)
with initial values for y(0),y’(0),...,y(""1) specified.
char. poly: P(x) = x" + apx" "1 4 - 4+ a9 = [T (x — A\)™.
basic solutions: {tet : 0 <j < m;1<i<k}.

Claim: The solution to eqn. (1) is unique and is uniquely
expressed as a linear combination of the basic solutions.
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Unique solution: x(t) = e”xg

First component is our solution: x; = y.
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Proposition. Let A be an eigenvalue for A. Then the
corresponding eigenspace is

Ey = Span{(1,\, X2, ..., A" )L

Corollary. Suppose that A has distinct eigenvalues A1, ..., Ak
(over C) with algebraic multiplicities, my, ..., my, respectively, so
the its characteristic polynomial is

k

pa(x) = ]I\ =x)™.

Then the Jordan form for A is

Imy (A1)
Y 00) 0

0 )



Proposition. Every solution to our original n-th order equation
(with a given initial condition) is a unique linear combination of
the basic functions

{tje)"t:0§j<m,-,1§i§k},

and each linear combination of these functions is a solution for
some initial condition.



Proposition. Every solution to our original n-th order equation
(with a given initial condition) is a unique linear combination of
the basic functions

{tje)"t:0§j<m,-,1§i§k},

and each linear combination of these functions is a solution for
some initial condition.
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Uniqueness

That the basic solutions are solutions is HW.

To show uniqueness, list the basic functions fi, ..., f,, and for
each (ai,...,an) € C", consider the solution

Sa(t) =1L+ ...anf,.

Define the linear function:
¢:C"—C"
(a1, ..., ) — (s4(0),5.(0), ..., s{"1(0)).

Then ¢ is surjective, hence injective. Done.



