Math 322

March 4, 2022

Let (V, || ||) be a normed vector space over $F = \mathbb{R}$ or \mathbb{C} .

Let $(V, \| \|)$ be a normed vector space over $F = \mathbb{R}$ or \mathbb{C} . Recall this means that for all $v, w \in V$ and $\alpha \in F$,

- 1. $||v|| \ge 0$ with equality if and only if v = 0;
- 2. $\|\alpha v\| = |\alpha| \|v\|$;
- 3. $||v + w|| \le ||v|| + ||w||$.

Let $(V, \| \|)$ be a normed vector space over $F = \mathbb{R}$ or \mathbb{C} . Recall this means that for all $v, w \in V$ and $\alpha \in F$,

- 1. $||v|| \ge 0$ with equality if and only if v = 0;
- 2. $\|\alpha v\| = |\alpha| \|v\|$;
- 3. $||v + w|| \le ||v|| + ||w||$.

If every Cauchy sequence in V converges (in V), then we say V is complete, and in that case $(V, \| \ \|)$ is called a *Banach space*.

Let $(V, \| \|)$ be a normed vector space over $F = \mathbb{R}$ or \mathbb{C} . Recall this means that for all $v, w \in V$ and $\alpha \in F$,

- 1. $||v|| \ge 0$ with equality if and only if v = 0;
- 2. $\|\alpha v\| = |\alpha| \|v\|$;
- 3. $||v + w|| \le ||v|| + ||w||$.

If every Cauchy sequence in V converges (in V), then we say V is complete, and in that case $(V, \| \ \|)$ is called a *Banach space*.

Definition. A *Banach space* is a complete normed linear space.

Contraction mappings

Definition. Let $(V, \| \|)$ be a Banach space, and let $X \subseteq V$. Let $T: X \to X$.

Contraction mappings

Definition. Let (V, || ||) be a Banach space, and let $X \subseteq V$. Let $T: X \to X$.

1. A point $u \in X$ is a fixed point for T if T(u) = u.

Contraction mappings

Definition. Let (V, || ||) be a Banach space, and let $X \subseteq V$. Let $T: X \to X$.

- 1. A point $u \in X$ is a fixed point for T if T(u) = u.
- 2. The function T is a contraction mapping if there is a constant $c \in [0,1) \subset \mathbb{R}$ such that

$$||T(u)-T(v)|| \leq c||u-v||$$

for all $u, v \in X$.

Theorem. Let (V, || ||) be a Banach space, and let $X \subseteq V$ be a closed subset of V (hence, it contains all of its limit points).

Theorem. Let (V, || ||) be a Banach space, and let $X \subseteq V$ be a closed subset of V (hence, it contains all of its limit points).

Suppose that $T\colon X\to X$ is a contraction mapping and fix a constant $c\in[0,1)\subset\mathbb{R}$ so that

$$||T(u)-T(v)|| \leq c||u-v||$$

for all $u, v \in X$.

Theorem. Let (V, || ||) be a Banach space, and let $X \subseteq V$ be a closed subset of V (hence, it contains all of its limit points).

Suppose that $T\colon X\to X$ is a contraction mapping and fix a constant $c\in[0,1)\subset\mathbb{R}$ so that

$$||T(u)-T(v)|| \le c||u-v||$$

for all $u, v \in X$.

Then T has a unique fixed point $\tilde{u} \in X$.

Theorem. Let (V, || ||) be a Banach space, and let $X \subseteq V$ be a closed subset of V (hence, it contains all of its limit points).

Suppose that $T\colon X\to X$ is a contraction mapping and fix a constant $c\in[0,1)\subset\mathbb{R}$ so that

$$||T(u)-T(v)|| \le c||u-v||$$

for all $u, v \in X$.

Then T has a unique fixed point $\tilde{u} \in X$.

Fix any $u_0 \in X$. Then for all $m \ge 0$,

$$\|\tilde{u}-T^m(u_0)\|\leq \frac{c^m}{1-c}\|T(u_0)-u_0\|.$$

Theorem. Let (V, || ||) be a Banach space, and let $X \subseteq V$ be a closed subset of V (hence, it contains all of its limit points).

Suppose that $T\colon X\to X$ is a contraction mapping and fix a constant $c\in[0,1)\subset\mathbb{R}$ so that

$$||T(u)-T(v)|| \le c||u-v||$$

for all $u, v \in X$.

Then T has a unique fixed point $\tilde{u} \in X$.

Fix any $u_0 \in X$. Then for all $m \ge 0$,

$$\|\tilde{u}-T^m(u_0)\|\leq \frac{c^m}{1-c}\|T(u_0)-u_0\|.$$

In particular, $\lim_{m\to\infty} T^m(u_0) = \tilde{u}$.

Theorem. Let (V, || ||) be a Banach space, and let $X \subseteq V$ be a closed subset of V (hence, it contains all of its limit points).

Suppose that $T\colon X\to X$ is a contraction mapping and fix a constant $c\in[0,1)\subset\mathbb{R}$ so that

$$||T(u) - T(v)|| \le c||u - v||$$

for all $u, v \in X$.

Then T has a unique fixed point $\tilde{u} \in X$.

Fix any $u_0 \in X$. Then for all $m \ge 0$,

$$\|\tilde{u}-T^m(u_0)\|\leq \frac{c^m}{1-c}\|T(u_0)-u_0\|.$$

In particular, $\lim_{m\to\infty} T^m(u_0) = \tilde{u}$. Proof . . .

To solve
$$x'(t) = f(x(t))$$
 with $x(0) = x_0$,

To solve x'(t) = f(x(t)) with $x(0) = x_0$, create the sequence of functions

$$u_0 := x_0$$

 $u_{k+1} := x_0 + \int_{s-0}^t f(u_k(s)) ds$, for $k \ge 0$.

To solve x'(t) = f(x(t)) with $x(0) = x_0$, create the sequence of functions

$$u_0 := x_0$$

 $u_{k+1} := x_0 + \int_{s=0}^t f(u_k(s)) ds$, for $k \ge 0$.

Operator on (C(I), || ||):

$$T: C(I) \to C(I)$$

$$u \mapsto x_0 + \int_{s=0}^t f(u(s)) ds.$$

Operator on (C(I), || ||):

$$T: C(I) \to C(I)$$

 $u \mapsto x_0 + \int_{s=0}^t f(u(s)) ds.$

Operator on (C(I), || ||):

$$T: C(I) \to C(I)$$

 $u \mapsto x_0 + \int_{s=0}^t f(u(s)) ds.$

Definition. If $I \subset \mathbb{R}$ is a closed bounded interval, let C(I) denote the \mathbb{R} -vector space of continuous functions on $I \to \mathbb{R}^n$ (where n is fixed). For each $u \in C(I)$, define

$$||u|| := \sup_{t \in I} |u(t)| = \max_{t \in I} |u(t)|.$$

Operator on (C(I), || ||):

$$T: C(I) \to C(I)$$

$$u \mapsto x_0 + \int_{s=0}^t f(u(s)) ds.$$

Definition. If $I \subset \mathbb{R}$ is a closed bounded interval, let C(I) denote the \mathbb{R} -vector space of continuous functions on $I \to \mathbb{R}^n$ (where n is fixed). For each $u \in C(I)$, define

$$||u|| := \sup_{t \in I} |u(t)| = \max_{t \in I} |u(t)|.$$

Under what conditions is T a contraction mapping?