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Cauchy, there exists N such that n > m > N implies
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It then follows that

€
|Xn — Xm| = :z: TXO < Z N |X0|<wxo=€.
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Chebyshev polynomials
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Forced harmonic oscillator

X" = —x + f(t).

Solution:

x(t) = x(0) cos(t) + x'(0) sin(t) + /siO f(s)sin(t — s) ds.

Suppose f(t) = cos(wt). Then

cos(wt) — cos(t)
1—w?

x(t) = x(0) cos(t) + x'(0) sin(t) +



x" = —x + cos(wt)

Solution:

x(t) = x(0) cos(t) + x"(0) sin(t) + cos(wt) — cos(t)

1— w2




