Math 322

February 14, 2022

Linear systems in $\ensuremath{\mathbb{R}}^2$

Let $A \in M_2(\mathbb{R})$.

Let $A \in M_2(\mathbb{R})$. Exactly one of the following holds:

Let $A \in M_2(\mathbb{R})$. Exactly one of the following holds:

1. A is diagonalizable over $\mathbb R$ with eigenvalues u and v (not necessarily distinct):

$$\left(\begin{array}{cc} u & 0 \\ 0 & v \end{array}\right).$$

Let $A \in M_2(\mathbb{R})$. Exactly one of the following holds:

1. A is diagonalizable over $\mathbb R$ with eigenvalues u and v (not necessarily distinct):

$$\left(\begin{array}{cc} u & 0 \\ 0 & v \end{array}\right).$$

2. A is not diagonalizable over \mathbb{R} , but has a real eigenvalue u (necessarily of multiplicity 2):

$$\left(\begin{array}{cc} u & 1 \\ 0 & u \end{array}\right).$$

Let $A \in M_2(\mathbb{R})$. Exactly one of the following holds:

1. A is diagonalizable over $\mathbb R$ with eigenvalues u and v (not necessarily distinct):

$$\left(\begin{array}{cc} u & 0 \\ 0 & v \end{array}\right).$$

2. A is not diagonalizable over \mathbb{R} , but has a real eigenvalue u (necessarily of multiplicity 2):

$$\left(\begin{array}{cc} u & 1 \\ 0 & u \end{array}\right).$$

3. A has a pair of conjugate complex roots $a \pm bi$ with $b \neq 0$:

$$\left(\begin{array}{cc} a & -b \\ b & a \end{array}\right).$$

Determinant and trace

Lemma. Let $A \in M_n(F)$ with eigenvalues $\lambda_1, \ldots, \lambda_n$. Then (i) $\operatorname{trace}(A) := \sum_{i=1}^n A_{ii} = \sum_{i=1}^n \lambda_i$ and $\det(A) = \prod_{i=1}^n \lambda_i$.

Determinant and trace

Lemma. Let $A \in M_n(F)$ with eigenvalues $\lambda_1, \ldots, \lambda_n$. Then

- (i) trace(A) := $\sum_{i=1}^{n} A_{ii} = \sum_{i=1}^{n} \lambda_i$ and det(A) = $\prod_{i=1}^{n} \lambda_i$.
- (ii) Consider the characteristic polynomial of A:

$$p(x) = \det(A - xI_n).$$

Then the coefficient of x^{n-1} in p(x) is $(-1)^{n-1}\operatorname{trace}(A)$ and the constant term of p(x) is $\det(A)$.

Moduli space for systems in \mathbb{R}^2

