Math 322 February 14, 2022 ## Linear systems in $\ensuremath{\mathbb{R}}^2$ Let $A \in M_2(\mathbb{R})$. Let $A \in M_2(\mathbb{R})$. Exactly one of the following holds: Let $A \in M_2(\mathbb{R})$. Exactly one of the following holds: 1. A is diagonalizable over $\mathbb R$ with eigenvalues u and v (not necessarily distinct): $$\left(\begin{array}{cc} u & 0 \\ 0 & v \end{array}\right).$$ Let $A \in M_2(\mathbb{R})$. Exactly one of the following holds: 1. A is diagonalizable over $\mathbb R$ with eigenvalues u and v (not necessarily distinct): $$\left(\begin{array}{cc} u & 0 \\ 0 & v \end{array}\right).$$ 2. A is not diagonalizable over \mathbb{R} , but has a real eigenvalue u (necessarily of multiplicity 2): $$\left(\begin{array}{cc} u & 1 \\ 0 & u \end{array}\right).$$ Let $A \in M_2(\mathbb{R})$. Exactly one of the following holds: 1. A is diagonalizable over $\mathbb R$ with eigenvalues u and v (not necessarily distinct): $$\left(\begin{array}{cc} u & 0 \\ 0 & v \end{array}\right).$$ 2. A is not diagonalizable over \mathbb{R} , but has a real eigenvalue u (necessarily of multiplicity 2): $$\left(\begin{array}{cc} u & 1 \\ 0 & u \end{array}\right).$$ 3. A has a pair of conjugate complex roots $a \pm bi$ with $b \neq 0$: $$\left(\begin{array}{cc} a & -b \\ b & a \end{array}\right).$$ #### Determinant and trace **Lemma.** Let $A \in M_n(F)$ with eigenvalues $\lambda_1, \ldots, \lambda_n$. Then (i) $\operatorname{trace}(A) := \sum_{i=1}^n A_{ii} = \sum_{i=1}^n \lambda_i$ and $\det(A) = \prod_{i=1}^n \lambda_i$. #### Determinant and trace **Lemma.** Let $A \in M_n(F)$ with eigenvalues $\lambda_1, \ldots, \lambda_n$. Then - (i) trace(A) := $\sum_{i=1}^{n} A_{ii} = \sum_{i=1}^{n} \lambda_i$ and det(A) = $\prod_{i=1}^{n} \lambda_i$. - (ii) Consider the characteristic polynomial of A: $$p(x) = \det(A - xI_n).$$ Then the coefficient of x^{n-1} in p(x) is $(-1)^{n-1}\operatorname{trace}(A)$ and the constant term of p(x) is $\det(A)$. ### Moduli space for systems in \mathbb{R}^2