Math 322

February 9, 2022

Announcements

- ► Job talks
- ▶ Status of the Stats program: today at 4:10 pm in Lib 389
- Questions?

Rewrite:
$$y' = \frac{t^2 + y^2}{2ty} = \frac{1}{2} \left(\frac{t}{y} + \frac{y}{t} \right)$$

$$+^2 + v^2 + 1 + v$$

Rewrite:
$$y' = \frac{t^2 + y^2}{2ty} = \frac{1}{2} \left(\frac{t}{y} + \frac{y}{t} \right)$$

Substitute
$$v = \frac{y}{t}$$
: $v + tv' = \frac{1}{2} \left(\frac{1}{v} + v \right)$

Rewrite:
$$y' = \frac{t^2 + y^2}{2ty} = \frac{1}{2} \left(\frac{t}{y} + \frac{y}{t} \right)$$

Substitute
$$v = \frac{y}{t}$$
: $v + tv' = \frac{1}{2} \left(\frac{1}{v} + v \right)$

Separable:
$$\frac{2v}{1-v^2}v' = \frac{1}{t}$$

Separable:
$$\frac{2v}{1-v^2}v' = \frac{1}{t}$$

Rewrite:
$$y' = \frac{t^2 + y^2}{2ty} = \frac{1}{2} \left(\frac{t}{y} + \frac{y}{t} \right)$$

Substitute
$$v = \frac{y}{t}$$
: $v + tv' = \frac{1}{2} \left(\frac{1}{v} + v \right)$

Separable:
$$\frac{2v}{1-v^2}v' = \frac{1}{t}$$

Integrate using the fact that $t \approx 1$ and $v \approx 0$:

integrate using the fact that
$$t \sim 1$$
 and $v \sim 0$

 $-\ln(1-v^2) = \ln(t) + c \implies 1-v^2 = \frac{a}{t} \implies 1-\frac{y^2}{t^2} = \frac{a}{t}$

Rewrite:
$$y' = \frac{t^2 + y^2}{2ty} = \frac{1}{2} \left(\frac{t}{y} + \frac{y}{t} \right)$$

Substitute
$$v = \frac{y}{t}$$
: $v + tv' = \frac{1}{2} \left(\frac{1}{v} + v \right)$

Separable:
$$\frac{2v}{1-v^2}v' = \frac{1}{t}$$

Integrate using the fact that $t \approx 1$ and $v \approx 0$:

$$-\ln(1-v^2) = \ln(t) + c \quad \Rightarrow \quad 1-v^2 = \frac{a}{t} \quad \Rightarrow \quad 1-\frac{y^2}{t^2} = \frac{a}{t}$$

Use initial condition and solve for y^2 : $y^2 = t^2 - t = t(t-1)$

Implicit solution:
$$y^2 = t^2 - t = t(t-1)$$

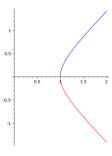
Implicit solution: $y^2 = t^2 - t = t(t-1)$

Note that there is no solution when for 0 < t < 1.

Implicit solution: $y^2 = t^2 - t = t(t-1)$

Note that there is no solution when for 0 < t < 1.

Two possible solutions for $t \ge 1$: $y = \pm \sqrt{t^2 - t}$.

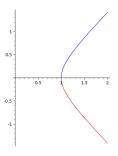


HW 2, problem 2:
$$2ty \ y' = t^2 + y^2$$
, $y(1) = 0$

Implicit solution: $y^2 = t^2 - t = t(t-1)$

Note that there is no solution when for 0 < t < 1.

Two possible solutions for $t \ge 1$: $y = \pm \sqrt{t^2 - t}$.



What is the speed of each solution when t = 1?

The Fundamental Theorem for Linear Systems (p. 17)

The Fundamental Theorem for Linear Systems (p. 17). Let $A \in M_n(F)$, and let $x_0 \in F^n$. The initial value problem

$$x' = Ax$$
$$x(0) = x_0$$

has the unique solution

$$x=e^{At}x_0.$$

The Fundamental Theorem for Linear Systems (p. 17)

The Fundamental Theorem for Linear Systems (p. 17). Let $A \in M_n(F)$, and let $x_0 \in F^n$. The initial value problem

$$x' = Ax$$
$$x(0) = x_0$$

has the unique solution

$$x = e^{At}x_0.$$

Theorem. For all $A \in M_n(F)$ and $t_0 > 0$, the function $\mathbb{R} \to M_n(F)$ given by

$$t \mapsto \sum_{k>0} \frac{A^k t^k}{k!} =: e^{At}$$

converges absolutely and uniformly for $t \in [-t_0, t_0]$.

Cauchy sequences

Definition. A sequence (v_k) in a normed vector space (V, || ||) is a *Cauchy sequence* if for all $\varepsilon > 0$ there exists $N \in \mathbb{R}$ such that for all m, n > N, we have

$$\|v_n-v_m\|<\varepsilon.$$

Cauchy sequences

Definition. A sequence (v_k) in a normed vector space (V, || ||) is a *Cauchy sequence* if for all $\varepsilon > 0$ there exists $N \in \mathbb{R}$ such that for all m, n > N, we have

$$\|v_n-v_m\|<\varepsilon.$$

Easy result: every convergent sequence is Cauchy.

Cauchy sequences

Definition. A sequence (v_k) in a normed vector space (V, || ||) is a *Cauchy sequence* if for all $\varepsilon > 0$ there exists $N \in \mathbb{R}$ such that for all m, n > N, we have

$$\|\mathbf{v}_n - \mathbf{v}_m\| < \varepsilon.$$

Easy result: every convergent sequence is Cauchy.

Theorem from analysis: if V is a finite-dimensional normed vector space, then V is *complete*: a sequence in V converges if and only if it is Cauchy.

Lemma. Let V and W be normed vector spaces with V finite-dimensional.

Lemma. Let V and W be normed vector spaces with V finite-dimensional. For each $k \ge 0$, let $f_k \colon W \to V$ be a function.

Lemma. Let V and W be normed vector spaces with V finite-dimensional. For each $k \geq 0$, let $f_k \colon W \to V$ be a function. Let $C \subseteq W$,

Lemma. Let V and W be normed vector spaces with V finite-dimensional. For each $k \geq 0$, let $f_k : W \to V$ be a function. Let $C \subseteq W$, and suppose there exists a sequence $(M_k)_k$ of positive numbers such that

$$||f_k(x)|| \leq M_k$$

for all $x \in C$ and for all k.

Lemma. Let V and W be normed vector spaces with V finite-dimensional. For each $k \geq 0$, let $f_k : W \to V$ be a function. Let $C \subseteq W$, and suppose there exists a sequence $(M_k)_k$ of positive numbers such that

$$||f_k(x)|| \leq M_k$$

for all $x \in C$ and for all k. Suppose further that $\sum_k M_k$ converges.

Lemma. Let V and W be normed vector spaces with V finite-dimensional. For each $k \geq 0$, let $f_k \colon W \to V$ be a function. Let $C \subseteq W$, and suppose there exists a sequence $(M_k)_k$ of positive numbers such that

$$||f_k(x)|| \leq M_k$$

for all $x \in C$ and for all k. Suppose further that $\sum_k M_k$ converges. Then $\sum_k f_k$ is absolutely and uniformly convergent on C.

Lemma. Let V and W be normed vector spaces with V finite-dimensional. For each $k \geq 0$, let $f_k \colon W \to V$ be a function. Let $C \subseteq W$, and suppose there exists a sequence $(M_k)_k$ of positive numbers such that

$$||f_k(x)|| \leq M_k$$

for all $x \in C$ and for all k. Suppose further that $\sum_k M_k$ converges. Then $\sum_k f_k$ is absolutely and uniformly convergent on C.

Proof. On board.

Convergence of exponential function

Theorem. For all $A \in M_n(F)$ and $t_0 > 0$, the function $\mathbb{R} \to M_n(F)$ given by

$$t \mapsto \sum_{k>0} \frac{A^k t^k}{k!} =: e^{At}$$

converges absolutely and uniformly for $t \in [-t_0, t_0]$.

Convergence of exponential function

Theorem. For all $A \in M_n(F)$ and $t_0 > 0$, the function $\mathbb{R} \to M_n(F)$ given by

$$t \mapsto \sum_{k>0} \frac{A^k t^k}{k!} =: e^{At}$$

converges absolutely and uniformly for $t \in [-t_0, t_0]$.

Proof. On board.

Definition. Let $A \in M_n(F)$ and $t \in \mathbb{R}$. Then

$$e^{At} := \sum_{k \ge 0} \frac{A^k t^k}{k!}.$$

Definition. Let $A \in M_n(F)$ and $t \in \mathbb{R}$. Then

$$e^{At} := \sum_{k \ge 0} \frac{A^k t^k}{k!}.$$

Definition. Let $A \in M_n(F)$ and $t \in \mathbb{R}$. Then

$$e^{At} := \sum_{k>0} \frac{A^k t^k}{k!}.$$

First properties:

1. $||e^{At}|| \le e^{||A|||t|}$.

Definition. Let $A \in M_n(F)$ and $t \in \mathbb{R}$. Then

$$e^{At} := \sum_{k>0} \frac{A^k t^k}{k!}.$$

- 1. $||e^{At}|| \le e^{||A|||t|}$.
- 2. $e^{P^{-1}AP} = P^{-1}e^AP$.

Definition. Let $A \in M_n(F)$ and $t \in \mathbb{R}$. Then

$$e^{At} := \sum_{k>0} \frac{A^k t^k}{k!}.$$

- 1. $||e^{At}|| \le e^{||A|||t|}$.
- 2. $e^{P^{-1}AP} = P^{-1}e^AP$.
- 3. If A and B commute, then $e^{(A+B)} = e^A e^B$.

Definition. Let $A \in M_n(F)$ and $t \in \mathbb{R}$. Then

$$e^{At} := \sum_{k \ge 0} \frac{A^k t^k}{k!}.$$

- 1. $||e^{At}|| \le e^{||A|||t|}$.
- 2. $e^{P^{-1}AP} = P^{-1}e^AP$.
- 3. If A and B commute, then $e^{(A+B)} = e^A e^B$.
- 4. $e^{-A} = (e^A)^{-1}$.

Example

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$

Example

$$A = \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right) \quad \text{and} \quad B = \left(\begin{array}{cc} 1 & 0 \\ 0 & 2 \end{array}\right)$$

Show that $e^{A+B} \neq e^A e^B$. (Note that $AB \neq BA$.)