


Announcements

> Job talks
» Status of the Stats program: today at 4:10 pm in Lib 389
» Questions?
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Rewrite: y' =

ﬂ+y2:1(f y)
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Substitute v =%: v+ tv' = 5 < + v)
v
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Separable:
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Integrate using the fact that t =~ 1 and v =~ O:

—In(1=v?)=In(t)+c = 1—v2:j

Use initial condition and solve for y2:  y? =t*> —t = t(t — 1)
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The Fundamental Theorem for Linear Systems (p. 17).
Let A€ M,(F), and let xp € F". The initial value problem

x' = Ax
x(0) = xo

has the unique solution
X = eAtxo.

Theorem. For all A€ M,(F) and ty > 0, the
function R — M, (F) given by

converges absolutely and uniformly for t € [—ty, to].
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Cauchy sequences

Definition. A sequence (vk) in a normed vector space (V, || ||) is a
Cauchy sequence if for all € > 0 there exists N € R such that for
all m,n> N, we have

|Vh — viml| < €.

Easy result: every convergent sequence is Cauchy.

Theorem from analysis: if V is a finite-dimensional normed vector
space, then V' is complete: a sequence in V' converges if and only
if it is Cauchy.
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Weierstrass M-test

Lemma. Let V and W be normed vector spaces with V
finite-dimensional. For each kK > 0, let f,: W — V be a function.
Let C C W, and suppose there exists a sequence (M), of positive

numbers such that
1) < My

for all x € C and for all k. Suppose further that ), My converges.
Then >, f is absolutely and uniformly convergent on C.

Proof. On board.
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Theorem. For all A€ M,(F) and ty > 0, the
function R — M,(F) given by

converges absolutely and uniformly for t € [—to, to].

Proof. On board.
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The matrix exponential

Definition. Let A€ M,(F) and t € R. Then

Ak tk
At ._
M= T

k>0

First properties:

1e™|| < ellAlliE

[

2. ePTIAP — plaAp.

3. If A and B commute, then e(ATB) — oAgB,

Ao ()7

o
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Example

01 10
A_<0 0) and B_<0 2)

Show that eA*B £ eAeB. (Note that AB # BA.)



