Math 322

February 7, 2022

Announcements

▶ Job talks

Announcements

- ▶ Job talks
- questions?

The Fundamental Theorem for Linear Systems (p. 17)

Let $F = \mathbb{R}$ or \mathbb{C} .

Theorem. Let $A \in M_n(F)$, and let $x_0 \in F^n$. The initial value problem

$$x' = Ax$$
$$x(0) = x_0$$

has the unique solution

$$x = e^{At}x_0.$$

Definition. A *norm* on a vector space V over F is a mapping

$$\| \| \colon V \to \mathbb{R}$$

satisfying

Definition. A *norm* on a vector space V over F is a mapping

$$\| \| \colon V \to \mathbb{R}$$

satisfying

1. (positive definite) $||v|| \ge 0$ for all $v \in V$, and ||v|| = 0 if and only if v = 0.

Definition. A *norm* on a vector space V over F is a mapping

$$\| \ \| \colon V \to \mathbb{R}$$

satisfying

- 1. (positive definite) $||v|| \ge 0$ for all $v \in V$, and ||v|| = 0 if and only if v = 0.
- 2. (absolute homogeneity) $\|\alpha v\| = |\alpha| \|v\|$ for all $v \in V$ and $\alpha \in F$.

Definition. A *norm* on a vector space V over F is a mapping

$$\| \ \| \colon V \to \mathbb{R}$$

satisfying

- 1. (positive definite) $||v|| \ge 0$ for all $v \in V$, and ||v|| = 0 if and only if v = 0.
- 2. (absolute homogeneity) $\|\alpha v\| = |\alpha| \|v\|$ for all $v \in V$ and $\alpha \in F$.
- 3. (triangle inequality) $||v + w|| \le ||v|| + ||w||$ for all $v, w \in V$.

Given a norm $\|\ \|$ on a vector space V, we can define a *metric* on V (i.e., a distance function) by

$$d(v,w):=\|v-w\|.$$

Given a norm $\|\ \|$ on a vector space V, we can define a metric on V (i.e., a distance function) by

$$d(v,w):=\|v-w\|.$$

Properties:

Given a norm $\|\ \|$ on a vector space V, we can define a *metric* on V (i.e., a distance function) by

$$d(v,w):=\|v-w\|.$$

Properties:

1. (positive definite) $d(v, w) \ge 0$ for all $v, w \in V$, and d(v, w) = 0 if and only if v = w.

Given a norm $\|\ \|$ on a vector space V, we can define a *metric* on V (i.e., a distance function) by

$$d(v,w):=\|v-w\|.$$

Properties:

- 1. (positive definite) $d(v, w) \ge 0$ for all $v, w \in V$, and d(v, w) = 0 if and only if v = w.
- 2. (symmetry) d(v, w) = d(w, v) for all $v, w \in V$.

Given a norm $\|\ \|$ on a vector space V, we can define a *metric* on V (i.e., a distance function) by

$$d(v,w):=\|v-w\|.$$

Properties:

- 1. (positive definite) $d(v, w) \ge 0$ for all $v, w \in V$, and d(v, w) = 0 if and only if v = w.
- 2. (symmetry) d(v, w) = d(w, v) for all $v, w \in V$.
- 3. (triangle inequality) $d(u, w) \le d(u, v) + d(v, w)$ for all $u, v, w \in V$.

Equivalence of norms

Every norm on a vector space defines the same topology:

Equivalence of norms

Every norm on a vector space defines the same topology:

Proposition. Let $\| \|_1$ and $\| \|_2$ be two norms on a finite-dimensional vector space V over F. Then these norms are *equivalent* in the following sense: there exist positive real numbers a, b such that

$$a||v||_2 \le ||v||_1 \le b||v||_2$$

for all $v \in V$.

Operator norm

Definition. The *operator norm* on the vector space $M_n(F)$ of $n \times n$ matrices with coefficients in F is given by

$$||A|| := \max_{|x| \le 1} |Ax|.$$

for each $A \in M_n(F)$ where | | is the usual norm on F.

Operator norm

Definition. The *operator norm* on the vector space $M_n(F)$ of $n \times n$ matrices with coefficients in F is given by

$$||A|| := \max_{|x| \le 1} |Ax|.$$

for each $A \in M_n(F)$ where $| \ |$ is the usual norm on F.

Lemma 1. For all $A, B \in M_n(F)$ and $x \in F^n$,

- 1. $|Ax| \leq ||A|||x|$.
- 2. $||AB|| \le ||A|| ||B||$.
- 3. $||A^k|| \leq ||A||^k$.

The exponential function

Goal for next time:

The exponential function

Goal for next time:

Theorem. For all $A \in M_n(F)$ and $t_0 > 0$, the function $\mathbb{R} \to M_n(F)$ given by

$$t \mapsto \sum_{k>0} \frac{A^k t^k}{k!}$$

converges absolutely and uniformly for $t \in [-t_0, t_0]$.