Math 201: Linear Algebra

David Perkinson

Fall 2021



Contents

Monday, Week 1: Solving systems of linear equations
Wednesday, Week 1: Reduced row echelon form
Friday, Week 1: Introduction to R

Week 2, Wednesday: Vector spaces

Week 2, Friday: Subspaces and spanning sets I
Week 3, Monday: Subspaces and spanning sets I1
Week 3, Wednesday

Week 3, Friday: Bases

Week 4, Monday: Dimension I

Week 4, Wednesday: Dimension 11

Week 4, Friday: Row and column spaces

Week 5, Monday: Linear transformations

Week 5, Wednesday: Range and nullspace

Week 5, Friday: Rank-nullity theorem; Isomorphisms

Week 6, Monday: Linear transformations and matrices 1
Week 6, Wednesday: Linear transformations and matrices 11

Week 6, Friday: Linear transformations and matrices 111

10

16

23

27

31

36

43

48

53

58

64

69

73

79

86

91



CONTENTS

Week 7, Monday: Matrix inversion

Week 7, Wednesday: Change of basis

Week 7, Friday: Determinants

Week 8, Monday: Determinant of the transpose

Week 8, Wednesday: Permutation expansion of the determinant
Week 8, Friday: Existence and uniqueness of the determinant
Week 9, Monday Parametrizing linear subspaces

Week 9, Wednesday: Determinants and volume

Week 9, Friday: Eigenvectors and eigenvalues

Week 10, Monday: Diagonalization algorithm

Week 10, Wednesday: Eigenspaces

Week 10, Friday: Algebraic and geometric multiplicity. Jordan form.

Week 11, Monday: Walks on graphs

Week 11, Wednesday: Inner product spaces

Week 11, Friday: Lengths, distances, components, angles

Week 12, Monday: Gram-Schmidt

Week 12, Wednesday: Orthogonal complements and projections
Week 13, Monday: Systems of linear differential equations
Week 13, Wednesday: Cross product

Week 13, Friday: The Spectral theorem

HOMEWORK

Week 1, Friday

95

101

106

112

118

129

134

137

143

148

155

160

166

171

174

179

185

191

196

201

205

205



CONTENTS 3

Week 2, Tuesday 207
Week 2, Friday 208
Week 3, Tuesday 209
Week 3, Friday 210
Week 4, Friday 211
Week 5, Tuesday 213
Week 6, Tuesday 214
Week 6, Friday 215
Week 7, Tuesday 216
Week 7, Friday 218
Week 8, Tuesday 220
Week 8, Friday 221
Week 9, Friday 224
Week 10, Tuesday 225
Week 10, Friday 227
Week 11, Tuesday 228
Week 11, Friday 230
Week 12, Tuesday 232
Week 13, Tuesday 233

Week 13, Friday 234



Monday, Week 1: Solving systems of linear equations

First goal: solve systems of linear equations using Gaussian elimination.
Note: In all of the examples today, we will work over the real numbers.

Example 1. Solve the following system of two linear equations:
3r + 2y =95
2v — y=1.

SOLUTION: We find a solution by eliminating variables. To get rid of y, multiply the
second equation through by 2 (which does not change the set of solutions), and add
the equations:

3r+2y =95
dr —2y =2 = z=1
Tx =7

Now substitute £ = 1 back into either of the equations, and solve for y:
r=1land 3z+2y=5 = y=1.

So there is a unique solution: r =y = 1. 0

Here is the geometric picture:

20 —y =1

.. solution: (1,1)

3z +2y=>5
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Remark. Note that the line given by 32+ 2y = 5 is perpendicular to the vector (3, 2)
and the line given by 2z—y = 1 is perpendicular to (2, —1). Do you see the relationship
between these vectors and the coefficients of the equations? We will get back to this
latter in the course.

Example 2. System:
—9r -3y =6
v+ y= -2

Since the first equation is a scalar multiple of the second, they have the same solution
set. In this case, the solution set is infinite:

{(2,y) :y = =30 —2}.

Geometry:

v +y=-2
(or =9z — 3y = 6)

Example 3. System:
—9r -3y =6
3r+ y=—1.

Dividing through by —3, we see that the set of solutions to the first equation is the
same as the set of solutions to the equation

3r+y=—-2

It is clear, though, that if (z,y) satisfies 3x +y = —2, it cannot also satisfy the
second equation in the system, 3z +y = 1. So the two equations in the system are
incompatible, and the solution set is empty.

The lines defined by the two equations are parallel:
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3v+y=-2 %

Example 4. System:
r+2y+ z2=0

T + z=4
r+ y+2z=1

We will use this example to illustrate the general method (called Gaussian elimina-
tion.

General idea: replace the set of equations with an equivalent set of equations (i.e.,
having the same solutions set) but from which the set of solutions is evident. We find
equivalent sets of equations by using the following:

Row operations.

(a) multiply an equation by a nonzero scalar
(b) swap two equations

(c¢) add a multiple of one equation to another.

The reader should stop now and convince themselves that the solution set is invariant
under these operations.

The good news is that these operations are all we need to solve any system of linear
equations. We will illustrate with the system of three equations displayed above. We
first introduce a convenient way of notating our system:

r+2y+ 2=0 1
x + z2=4 ~ 1
r+ y+2z=1. 1

= O N

1
1
2

— = O

The matrix on the right is called the augmented matriz for our system of linear
equations. At any point in the following string of calculations, one could convert
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back from an augmented matrix to its corresponding system of linear equations, and
that system would be equivalent to our orignal system.

In the following calculation, r; denotes the i-th row of the augmented matrix, and we
introducing some notation for describing the row operations leading from one matrix
to the next.

12110 12 1o\ 1 /1 2 1] 0
10 1/4 |22 0 -2 0]4 2 0 1 0|—2 | lxzretre
1121/ ™™™ Lo -1 1|1 0 -1 1| 1
12 1] 0 10 1] 4 100 5
01 0|—2 | =2t g1 of—2 |22t [ g1 0f=2
00 1[-1 00 1|1 00 1|1

The last augmented matrix is in reduced echelon form. We will define this term
carefully later. Translate the lasted augmented matrix back into a system of equations
to get a system that is equivalent to the original system, but from which the set of
solutions is evident:

r= b
-2
z=—1.

So there is a unique solution in this case. Now for the most important step: check
your solution works for the original system:

5+2(—2) + (1)
5 + (1)
54 (=2)+2(-1)

0
4
1.

That works. (We will suppress checking solutions throughout the result of this lecture,
but in practice, you should always check your solutions.)

Example 5. The following system is a slight modification of the previous one:

r+2y+2=0
x +2z2=4
r+ y+z=1.
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Converting to the corresponding augmented matrix and performing a sequence of row
operations similar to those in the previous example gives

1 0 1|4
~s 01 0f-2
000

1
1
1 —1

— O N

1
1
1

— o~ O

Converting back to equations gives the equivalent system:

r+z=4
y=-2
0=-1

which clearly has no solutions. Thus, our original system has no solutions.

Example 6. System:

rT+2y+2=0
x +z=4
T+ y+z=2.

Converting to the corresponding augmented matrix and performing a sequence of row
operations similar to those in the previous example gives

12 1|0 10 1] 4
1 0 14 ~ 01 0|-2
11 12 00 0] 0
Equivalent system:
r+z=4
y=-2
0=0

We now get an infinite set of solutions:
{(z,y,2):x+z=4and y = =2} = {(z,—2,4 —x) : z € R}.

This is a line in 3-space.
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Figure 1.1: The line {(z,—2,4 — x) : x € R}.



Wednesday, Week 1: Reduced row echelon form

Goals for today:

e Discuss the computation of the reduced row echelon form of a system (or ma-
trix).

e [f there is an infinite number of solutions to a system, know how to describe
the solution set in two ways (which we will call “parametric form” and “vector
form”).

e Vocabulary: reduced row echelon form, pivot variables (or pivot columns or
pivot entries), free variables.

Procedure:

(a) Convert the linear system into an augmented matrix.

(b) Compute the reduced row echelon form of the matrix.

(c) Convert the reduced matrix back into a system of equations.

(d) Solve for the pivot variables.

(e) Express your solution in one of two forms, as described in the examples below.

Echelon forms See our text for the precise definitions of echelon form (Chap-
ter I, Definition 1.10) and reduced row echelon form (Chapter III, Definition 1.3).
The general structure of a matrix in row echelon form is:

* = nonzero piwot entry

zeros below “staircase”

The general structure of a matrix in reduced row echelon form is:

10
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pivot entries = 1

zeros below “staircase”
and above pivot entries

Example 1. Find the solutions to the following linear system over the real numbers:
2ZL’3 + 6?1)4 =0
T1+ 2z + x3+ 374 =1
2£B1 + 4[EQ + 3{E3 + 9$4 + x5 = 5.

Solution: The associated augmented matrix is

0026 0[]0
1213 0]1
2 439 1|5

We now use row operations to compute the reduced row echelon form of this matrix:

1213012220026 00|z
2439 1|5 2439 1|5
1213 0|1 1 1 2130]1

T2 T2 ri—r1—Tra
0026 00 0013 0|0 |z
0013 1|3 0013 1|3) ™

1200 0]1
001300
000013

The final matrix is the reduced row echelon form of the original matrix. (See our text
for the precise definition.) The first, third, and fifth column are the pivot columns,
and the leading 1s in these column are called pivots.

The system of linear equations represented by the reduced echelon form has the same
set of solutions as the original system and is in a much simpler form:
r| + 2.172 =1
T3 + 31‘4 =0

{135:3.
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The variables corresponding to the pivots—in this case, x1, x3, and xs—are called
the pivot variables. The others—in this case, x5 and x4—are the free variables. The
free variables can take on any values, and once we assign values to the free variables,
they determine the values of the pivot variables. (Since we have two free variables,
the solution set is two-dimensional in a sense that will be precisely defined later in
the course.) The solution set is

{(xl,xQ,xg,x4,x5) ER®: x4+ 209 =1,25+ 324 =0, 25 = 3} )

Solving for the pivot variables, we have
I = 1-— 21‘2
T3 = —314
Iy = 3.

You should know how to express this solution in the following two ways. The first
involves writing the pivot variables in terms of the free variables:

{(1 = 229,29, =31y, x4,3) : k2,24 € R} .

We will call this the parametric version of the solution set. The second way of writing
the solution set we will call the vector version. It looks like this:

1 -2 0
0 1 0
0 | +a 0O | +x4] -3 txo,x4 €ER
0 0 1
3 0 0

Here we are using column vectors, and for instance,

-2 —2£L‘2
1 T2
) 0 = 0
0 0
0 0

and we can add column vectors component-wise. Therefore,

1 -2 0 1—2z9
0 1 0 T

0 | +a 0O | +x4] =3 = —3x4
0 0 1 X4

3 0 0 3
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Example 2. Suppose the reduced row echelon form for an augmented matrix has
the form

0101 201 7
0014 —-10 3|-2
6ooo0oo0 011 3

0000 O0O0O0O O
Write the solution set in parametric and vector form.
Solution: The first step is to convert the augmented matrix as a system of equations:
To + T4+2x5 + x7=7
1‘3+4I4— Ty +3$7:—2

Tg + IE7:3.

(The last row corresponds to the equation 0 = 0, which we can discard.) The pivot
variables are x5, r3, and xg. The rest are free variables. Solving for the pivot variables:

ZL‘2:7—£C4—25L‘5—I7
$3:—2—4ZL’4+$5—3$7

$6:3—IE7.

The parametric form for the solutions is

{(z1, T— x4y — 2205 — 27, =2 —day + x5 — w7, T4, T5, 3 — Ty, T7) : Ty, T5,27 € R},

(2.1)
and the vector form is
( 0 0 0 0 )
7 -1 -2 -1
-2 —4 1 -3
0 | +x4 1 | +ux5 0 | +a7 0 i x4, x5, 07 € R
0 0 1 0
3 0 0 -1
\ 0 0 0 1 )

Important: Note how these two forms of the solutions are related. For instance,
looking at just the constant terms in (2.1) gives the first column vector displayed
above. Looking at just the coefficients of x4 gives the second column vector, and so
on. We get one column for the constants and one column for each of the free variables.
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The next example illustrates how linear algebra can be used to say something about
non-linear objects.

Example 3. Find all parabolas f(z) = ax?+ bx + ¢ passing through the points (1, 4)
and (3,6) (determine a, b, and c).

Solution: To pass through (1,4), we need f(1) =4, i.e.,
4=a-1>+b-1+c=a+b+c,
and to pass through (3,6), we need f(3) =6, i.e.,
6=a-3"+b-3+c=9a+3b+ec.
So we need to solve the system

a+ b+c=1
9a 4+ 3b+c = 6.

Apply our algorithm:

1 1 1 4 ro—ro—9r] 1 1 1 4 T2H7%T2
9 3 1|6 0 -6 —8|-30

11 1[4 ron-m (10 —1/3]-1
0 1 4/3]5 Lo 43 5)

The corresponding system is

—_

The solution set is

1 1/3
5 | +c| —4/3 | :ceR
0 1

In this way, the set of parabolas passing through the two given points is parametrized
by a line in 3-space. For each ¢, we get a corresponding parabola—the graph of the
function

fl@)=(-1+ic)2*+ (5b—4c)z+c
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Here is a check that all of these parabolas pass through (1,4) and (3, 6):

f)y=(-14+43c)+ (5—3¢) +c=4
fB3)=(-1+34¢)3+ (5—3¢)3+c=6.

Here are graphs of a few of these (¢ = —1,0,1,2,3,4,5):

s

15



Friday, Week 1: Introduction to R

We will start the study of abstract vector spaces in the next class. Today, we will
introduce a particular vector space, R", and informally discuss some of its subspaces
(lines, planes, etc.)

Definition. Real n-space is the set

R":=Rx---xR:={(x1,...,2,) 0 €Rfori=1,...,n}.
—_———

n-factors

with two operations: addition +: RxR — R and scalar multiplication -: RxR™ — R™
defined, respectively, as follows:

(xla"-vxn)+<yla"'7yn) = (x1+y17"'7xn+yn)7

and
Az, .oymy) = (A, .., Ay)

for all (z1,...,2,), (y1,-..,yn) € R" and A € R.
Example 1. In R*,

(4,0,—-2,1) 4+ (3,1,2,—4) = (7,1,0,-3)

and
2(0,3,3,7) = (0,6,6,14).
We will often think of points in (z1,...,2,) € R" as column vectors or column
matrices:
1
In
Example 2.
1 3 —1
21 2 | - 0| = 4
4 —4 12
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There are two standard ways to interpret an element p € R™: either as point in
space or as a vector (thought of as an arrow or direction') For instance, we can think
of (1,2) € R? as point:

or as an arrow /direction:

Geometrically, addition of vectors is given by the “parallelogram rule” and scalar
multiplication amounts to scaling the length of a vector but not its directions (except
that scaling by a negative number reverses direction):

—2u

I The word “vector” will soon have a technical definition: an element of a vector space.
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Definition (line in R™). Let p,v € R™, with v # (0,...,0). Then

{p+I:XeR}

is the line in R™ wn the direction of v and passing through the point p.

Remarks.

(a)

In the above definition, the set of all scalar multiples of v, i.e., {Av : A € R},
gives a line through the origin in the direction of v. We then translate that
line through the origin by p. In that translation, the origin is translated to the
point p (and, thus, the resulting line contains the point p).

We say the function

R — R"
t—p+tu

is a parametrization of the line passing through p in the direction of v. Its image
is the line, itself. We could use A or any symbol here instead of ¢, of course.
We are using ¢ to connote time. We think of the parametrization as giving the
position at each time ¢ of a point traveling along the line.)

Exercise. Try to show that if ¢ is any point on the line {p + \v : A € R} and
w is any nonzero scalar multiple of v, then

{g+ w:AeR}={p+Iv:)eR}

So the same line may be described in many different ways. (This is not hard to
do: start with an arbitrary element of the set on the left-hand side, and then
show that is contained in the set on the right-hand side.)

Example 3. Give a parametrization of the line through the points (1,2,0) and
(0,1,1) in R3.

Solution. For the direction, we may choose v = (0,1,1) — (1,2,0) = (—1,—1,1). (We
think of v as the vector with head (0,1, 1) and tail (1,2,0)). We then pick any point
on the line, say p = (1,2,0). Then our line has the parametrization

tsp+tv=(1,2,0)+1((0,1,1) = (1,2,0)) = (1,2,0) + t(—1, —1,1).

Setting ¢ equal to 0 and 1, respectively, shows that this line really does pass throught
the points (1,2,0) and (0, 1,1). Here is an alternative way to write this parametriza-

tion:

t— (1—t2—1t,1).
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Example 4. A line in R? can always be expressed as the solution set to a single
linear equation. For example, consider the line

L:=1{(3,2) + \(1,5): A € R}.
A point (z,y) lies on this line L if and only if
(z,y) = (3,2) + A(1,5) = (3+ X, 2+ 5X)
for some A € R. It follows that
(v,y) e L<= =3+ and y=2+5A\ for some A

1
< r—-3=)\ and 5(y—2):)\forsome)\

1
<:>x—3:g(y—2)

<~ br—15=(y —2)
= dr —y = 13.

So the line L is the set of solutions to 5z —y = 13.

Example 5. A line in R? is always the solution set to a system of two linear
equations. For example, consider the line through the points (1,0,2) and (3,1, —1),
parametrized by

t (1,0,2) +((3,1,-1) — (1,0,2)) = (1,0,2) + £(2, 1, —3).

We would like to find a system of two linear equations whose solution set is this line.
A linear equation in R?® has the form

ar + by + cz =d.

We would like to find a, b, ¢, d so that the solution set for this equation contains the
points (1,0,2) and (3,1,—1). It turns out that this will force the whole line to be
contained in the solution set. To contain these points, we need

a +2c=d
3a+b— c=d.

To solve this system, we first put it in reduced row echelon form by substracting 3
times the first equation from the second to get

a +2c=d
b—"Tc=—-2d.
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Solve for the pivot variables:
a =—2c+d

b="Tc—2d.
To find two independent solutions?, we first set (¢, d) = (1,0), in which case
a=—-2,b=T7c=1and d=0.
We stick these values into ax + by 4+ cz = d to get our first linear equation
—2x+Ty+2=0.
Next we set (¢,d) = (0,1) to get
a=1,b=-2c=0andd=1
with corresponding linear equation
r—2y=1.
In sum, our line is the solution set to the system

—2r+Ty+2=0
T — 2y =1.

The reader should check that our original points, (1,0,2) and (3,1,—1) are both
solutions to this system.

Definition (plane in R"). Let p,v,w € R". Suppose that v and w are nonzero and
that neither is a scalar multiple of the other. Then

{p+ v+ pw: (\p) €R?}
is the plane in R™ containing p and with directions® v and w.
The plane in the above definition has the parametrization
R*> — R"
(5,t) = p+ sv+tw.

Example 6. Find the plane P through the points (0,2, —1), (4,2,1), and (1,0, 1).
Describe both parametrically and as the solution set to a single linear equation.

2The precise meaning of independence is left for later.
3The word “directions” here is not quite standard but will do for now
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Solution. To find the directions, we fix any of the three points, say (4,2, 1), and we
consider the two arrows having this point as their tail and (0,2, —1) and (1,0, 1) as
their heads:

=(=4,0,-2)
(=3 )

Geometrically, we have the following picture for these directions:

= ((0,2,-1) — (421))
=((1,0,1) = (4,2,1)) =

(0,2,—1)

v (1,0,1)

(4,2,1)

So a parametric description of the line is
{(4,2,1) + A\(—4,0,2) + u(=3,-2,0) : A\, u € R}.

or
{(4—=4X=3p,2 = 2,1 +2X) : \,u € R}

As an aside: this parametric description is great for drawing the plane using a com-
puter. For instance, the Sage code for plotting this plane could be:

s,t = var("s,t")
parametric_plot3d((4-4*s-3*t,2-2%t,1+2xs),(s,-1,1),(t,-1,1))

We would now like to describe the plane P as the solution set of a single linear
equation. That equation will have the form

ar +by+cz=d

for some a,b,c,d € R. Our job is to find a,b,c,d. (Scaling an equation does not
change its solution set, so our solution will only be unique up to such scaling.) For P
to contain (0,2, —1), (4,2,1), and (1,0, 1), we need
2b—c=d
da+2b+c=d
a +c=d.
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Reducing to row echelon form and solving for pivot variables, we find

a=—d
3

b=—-d
2

c=2d.

We are free to choose any nonzero value for d (again: our solution is only unique up
to scaling). We choose d = 2 (to get rid of the denominator of 2). Therefore, the
plane P is the solution set to the equation

—2r + 3y +4z = 2.
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Let F be a field, e.g., Q, R, C, Z/2Z (but not Z).

Definition. A wvector space over F' is a set V with two operations

vector addition: +:VxV =V
(v,w) —v+w

scalar multiplication: L FxV sV

(a,v) = av

such that the following hold for all x,y,z € V and a,b € F:

(a) z+y =y + x (commutativity of addition).

(b) (x+y)+ 2z = (z+y) + z (associativity of addition).

¢) There exists 0 € V such that 0 +w = w for all w € V.

e) For 1 € F', we have 1 -z = x.

f) (ab)xr = a(bx) (associativity of scalar multiplication).

)
)
()
(d) There exists —z € V such that x + (—z) = 0.
(e)
(f)
g) a(r +y) = ax + ay (distributivity).
)

(

(h) (a+b)x = ax + bx (distributivity).

Remark. Rules 1-4 provide the additive structure and say that under addition V'
forms an abelian group. Rules 5-8 deal with the second operation, scalar multiplica-

tion. Together, they provide a linear structure for the set V.

23



Week 2, Wednesday 24

Exercise. Let v be an element of a vector space. Prove that (—1)v = —v.
Example. Let " = F' x --- x F ={(ay,...,a,) :a; € F fori=1,...,n} with the
~—_——
n times
operations

(a1,...,an)+ (b1, ..., by) := (a1 + b1,...,a, +by,)

clay, ... ay) = (cay,...,cap)
for all (ay,...,a,),(b1,...,b,) € F" and ¢ € F. Then F" is a vector space.

Special cases:

(a) F =R and n = 2. This gives R? with its usual linear structure. Addition is
given by the “parallelogram rule” and scalar multiplication scales length:

Here are examples of the vector space axioms in the special case V = R
1. commutativity of +:

(6,3) +(—2,4) = (4,7) = (—2,4) + (6, 3);
2. associativity of +:

((6,3) +(=2,4)) +(0,2) =

3. zero vector:

(0’ O) + (67 3) = (67 3);

4. additive inverses:

(67 3) + (_67 _3) = (07 0);

5. scaling by 1:
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6. associativity of scalar multiplication:
(3-2)(6,3) = 6(6,3) = (36, 18) = 3(12,6) = 3(2(6,3))
7. distributivity:

and
3(6,3) +3(—2,4) = (18,9) + (—6,12) = (12, 21);

8. distributivity:
(3+2)(6,3) =5(6,3) = (30, 15)

and
3(6,3) +2(6,3) = (18,9) + (12,6) = (30, 15).

(b) F =17/3Z and n = 4. For example, (0,1,0,0),(1,1,0,2) € (Z/3Z)*, and
(0,1,0,0) +2(1,1,0,2) = (0,1,0,0) + (2,2,0,1) = (2,0,0, 1).
(c¢) The field F is a vector space over itself (this is the case of F"™ with n = 1).
More examples of vector spaces.

(i) The field C is a vector space over R. For all a,b,c,d,t € R, we have

(a+bi)+ (c+di)=(a+c)+ (b+d)i
t(a + bi) = ta + (tb)i.

(ii) The field R is a vector space over Q.

(iii) The set of m x n matrices with entries in F:

air ... Q1n
men = D Qg € F for all Z,]
Am1 .- Qmp
has a standard vector space structure. Given A € M,,.,, denote the entry in

its i-the row and j-th column by A;;. Define the vector space operations on
M, «n as follows:

scalar multiplication: (cA);; := cA;; for all A € M,,y,, and c € F.
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For example, let F'=Q, m =2, and n = 3. We have
5 103+502—1_2101
-1 2 0 10 4 ~\3 4 20 )
Calling this last matrix A, we have A, =2, A; 5 =10,..., Ay 3 = 20.

(iv) (Important.) If S is any set, let F*° be the set of functions f: S — F. This
function space is naturally an F-vector space (i.e., a vector space with scalar
field F) with the following operations: for f,g € F° and t € F define f + ¢
and tf by

addition: (f+9)(s) = f(s)+g(s)

scalar multiplication: (tf)(s) :==t(f(s)).

Special cases:

e If S = {1,...,n}, then F¥ is essentially F™. For example, we can think
of (3,2) € R as the function

f: {2} —=>R
1—3
2= 2.
In general, (ai,...,a,) € F™ can be thought of as the function
f+{1...,n}=>F
1 — a;.

e Similarly, if S = {(i,j):i=1,...,mand j=1,...,n}, then F¥ may
be identified with M,,,, with f € F° corresponding to the matrix A
where A;; = f(i,7).

o If S={1,2,3,...}, then F° is the vector space of infinite sequences in F.
For example, the sequence 1,1/2,1/4,1/8,... in Q can be identified with
the function f: S — Q defined by f(i) = 1/2".

Definition. A subset W C V of a vector space V is a subspace of V is it is a vector
space with the operations of addition and scalar multiplication inherited from V.

We will talk about subspaces in the next class.
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Note: Unless otherwise stated, from now on V' will denote a vector space over a
field F.

The over-arching goal of the next several classes is to define the notions of dimension
and isomorphism and show that every finite-dimensional vector space over F' is iso-
morphic to the vector space of d-tuples, F¢, where d is the dimension. Today’s class
lays some of the groundwork for reaching that goal.

Definition. Let S be a nonempty subset of V. Then v € V is a linear combination
of vectors in S if there exist uy,...,u, € S and ay,...,a, € F (for some n) such that

n
V= g AQ;U; = AU + -+ + ApUy.
i=1

Example. Let S = {(3,2),(2,—1)} C R. Is (—1,4) a linear combination of vectors
in S7 In other words, do there exist a,b € R such that

a(3,2) +b(2,—1) = (—1,4)?

Since a(3,2) +b(2, —1) = (3a+2b,2a — b), the above requirement is equivalent to the
existence of a,b € R such that
3a+2b0= -1

2a — b =4,

a system of linear equations! Apply our algorithm to look for solutions:

3 2 _1 r1T—r1—"r2 1 3 _5 7"2—}'/’2—27‘1 1 3 _5 TQH_%TZ
2 —-1| 4 2 —-1| 4 0 —7| 14

1 3 _5 r1—7r1—37r2 ]. O 1
0 1|-2 0 1(-2 )"

27
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Thus, a = 1 and b = —2. Check:
1-(3,2) —2(2,-1)=(-1,4). vV
So (—1,4) is a linear combination of the two given vectors. (If it were not, we would

have had an inconsistent system, i.e., a system with no solutions.)

Definition. Let S be a nonempty subset of V. The span of S, denoted Span(S), is
the set of all linear combinations of elements of S. By convention Span () := {0}, and
we say that 0 is the empty linear combination.

Example. In R?,
Span{(1,1)} = {(a,a) : a € R}.
In R3,
Span {(1,0,0),(0,1,0)} = {a(1,0,0) + b(0,1,0) : a,b € R} = {(a,b,0) : a,b € R}.
Note that the same set can be spanned by different sets of vectors, for instance,

Span {(1,0,0),(0,1,0)} = Span{(1,0,0),(0,2,0)}
= Span {(1,0,0), (0,1,0), (2,3,0)} .

A point in R? is in any of these sets if and only if its third component is 0.

Definition. A subset W C V is a subspace of V if W is a vector space itself with
the operations of addition and scalar multiplication inherited from V.

Proposition. W C V is a subspace of V' if and only if

(a) 0e W

(b) W is closed under addition (z,y € W =z +y € W)

(c) W is closed under scalar multiplication (¢ € F and w € W = cw € W).

Proof. Exercise. Part 1 is there to ensure that W is nonempty. (Note that Part
2 and Part 3 are vacuously true for the empty set, and yet the empty set is not a
subspace because of Part 1.) O

Examples.
(a) W =1{(a,0) : a € R} is a subspace of R2.

Proof. Letting a = 0, we see (0,0) € W. If (a,0),(b,0) € W, then (a,0) +
(b,0) = (a+b,0) € W. If ¢c € R and (a,0) € W, then ¢(a,0) = (ca,0) € W.
Thus, W is a subspace of R2. O
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(b) Let

V={f:R—R: fis continuous},
W ={f:R—=R: fis differentiable} .
Both V and W are subspaces of the vector space R¥ of functions from R to R

(recall our earlier notation F'® for functions from a set S to a field F'), and W is
a subspace of V.

(c) Let W = {(a,b) € R? : ab=0}. So W is the union of the two coordinate axes
in R%2. Each of these coordinate axes is a subspace of R? but W is not. For
instance, (1,0),(0,1) € W, but (1,0) + (0,1) = (1,1) ¢ W. So W is not closed
under addition.

(d) {0} and V are always subspaces of V. The empty set (} is not a subspace (since
it does not contain 0).

Proposition. If W, and W, are subspaces of V', so is Wy N W.

Proof. Since W; and W, are subspaces, we have 0 € W, for ¢+ = 1,2. Hence,
0 e WinNnWs. If u,v € Wy N Ws, then u,v € W; for ¢« = 1,2. Hence, u+v € W, for
1 = 1,2. Similarly, for each A € F,

u € WiNWs = weW and u e Wy
=  Auec W, and Au € Wy
= AuGWlﬁWQ

Proposition. Let S be a subset of V. Then:

(a) Span(S) is a subspace of V.
(b) If W C V is a subspace and S C W, then Span(S) C W. (In other words: a sub-
space is closed under the process of taking linear combinations of its elements.)

(c) Every subspace of V' is the span of some subset of V.

Proof. 1. If S = (), then Span(S) = {0}, which is a subspace of V. Otherwise, we will
show 0 € Span(S) and Span(S) is closed under addition and scalar multiplication.
Since S # (), there exists some v € S. Then 0 - u is a linear combination of elements
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in S, and 0-u = 0 (the first 0 in this equation is in F, and the second is in V).
Hence, 0 € Span(S). Now let x,y € Span(.S) so that

T =a1U; + -+ Uy,
y=0bvy+- +byv,

for some a;,b; € F and u;,v; € S. Then
Ty =au;+ -+ aply, + bivy + - -+ + byv, € Span(S)
and for each \ € F,

Az = Najug + -+ + amt) = (Aag)ug + - -+ + (M) Uy € Span(.S).

2. Take x € Span(S). Then = = aju; + -+ + apu, for some a; € F and u; € S.
Since S C W, we have u; € W for all 7, and since W is a subspace, it is closed under
vector addition and scalar multiplication. Therefore, x € W.

3. Span(W) = W. O
Definition. A subset S C V' generates a subspace W if Span(S) = W.

Examples.

(a) {1,z,2%, ..., } generates P(F), the vector space of polynomials in one variable
over . More commonly, this vector space is denoted F[x].

(b) {(1,0),(0,1)} generates R So do {(1,0),(0,1),(3,—2)} and {(1,1),(0,1)}.

(¢) The i-the standard basis vector for F™ is e; := (0,...,0,1,0,...,0), the vector
whose only nonzero entry is in the i-th component. We have that {e,...,e,}
generates F™.
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In today’s lecture, we start by proving a simple (but useful) results about spanning
sets. We then present several examples of subspaces and spanning sets.
Recall the definitions presented last time:

Definition. Let S be a nonempty subset of V. Then v € V is a linear combination
of vectors in S if there exist uq,...,u, € S and ay,...,a, € F (for some n) such that

n
V= E aQ;U; = QUL + *++ + AQplUy,.
i=1

Definition. Let S be a nonempty subset of V. The span of S, denoted Span(S), is
the set of all linear combinations of elements of S. By convention Span () := {0}, and
we say that 0 is the empty linear combination.

Lemma. Let V be a vector space over F', let S C V, and let v € V. Then
Span (S U{v}) = Span(S) < v € Span(9).

Proof. (=) If Span (S U {v}) = Span(S), then since v € Span (S U {v}), it follows
that v € Span(S).

(<) Suppose that v € Span(S). We wish to show that Span (S U {v}) = Span(S).
Suppose that w € Span(S U {v}). Then we can write

W= a8, + -+ asy + bv

for some si,...,s; € S and some ay,...,a5,b € F. We are given that v € Span(S).
Hence,
U:Cﬂfl—F"'—i‘Cﬂfg

for some ti,...,t, € S and some c¢y,...,¢, € F. Substituting into the previous
equation, we see

'LU:CL181+"'+ak8k+b(61t1+"‘+Cgtg)

31
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=a181 + -+ + agsy + beyty + - - -+ begty
€ Span(S).

We have shown that Span (S U{v}) C Span(S). The opposite inclusion also holds
since one is easily sees that

S C SU{v} = Span(S) C Span(S U {v}).

We now move on to examples of subspaces and spanning sets.

Example. Recall from the reading that Py(F’) is the vector space of polynomials of
degree at most k with coefficients in F'. Another, more standard, notation for this
vector space is F[z]<;. We have that

Pu(F) = Flx]<y = Span{1, x,...,2"}.

Now let
S = {z*+ 3z — 2,22 + 5z — 3} C R[z]<s.

Is —2? — 4z + 4 € Span(S)?
Solution. We are looking for a,b € R such that
—2? —dx + 4 = a(2® + 3z — 2) + b(22* + 51 — 3),
in other words, such that
—2? — 4z + 4 = (a + 2b)2* + (3a + 5b)x + (—2a — 3b).

So we need to see if the following system of linear equations has a solution:

a+2b=-1
3a+5b=—4
—2a — 3b = 4.

Applying Gaussian elimination, we find

1 2|-1 1 0]0
3 5|4 ~ 0 10
-2 =3| 4 0 01

We see that the system is inconsistent, i.e., it has no solutions. So —x? — 4x + 4 ¢

Span(.5).
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Definition. Let S be any set, and consider the function space F* := {f: S — F}.
For each s € S, define the characteristic function x, € F*° for s by

Xs: S = F
1 ift=s
t—
0 otherwise.

Example. Let S = {1,2,3}, and consider the function f: S — R given by f(1) =
—1, f(2) = m, and f(3) = 16. Then we can write f as a linear combination of
characteristic functions:

f=—x1+mx2+ 16xs.

For instance,

f(2) = (=x1 +7x2 + 16x3)(2)
— —x1(2) + Txa(2) + 16x5(2)
=—0+7-14+16-0=m.

In this way, if S is finite, then {y, : s € S} generates F’°. On the other hand, if S is
infinite, things are more complicated. For instance, consider the case where S = N =
{0,1,2,...}. Then RY is the vector space of infinite real sequences. For instance, the
sequence 1,1/2,1/4, /8, ... is the function f € RY given by f(i) := 1/2%. If we try to
write f as a linear combination of characteristic functions, we would have

1 1 1
f:X0+§X1+ZX2+§X3+'“ ;
an infinite sum. However, by definition, the span of a set is the collection of all finite
linear combinations of elements in the set. Infinite linear combinations like those
above involve questions of convergence, and we are not concerned with those issues
at the moment.

Definition. A linear equation of the form ayz; + -+ + a,z, = 0 where a; € F is
called homogeneous.

Proposition. The solution set to a system of homogeneous linear equations in n
unknowns and with coefficients in F' is a subspace of F™.

Proof. First note that the zero vector satisfies any homogeneous linear equation. So
the solution set is nonempty. Next, let v = (uy,...,u,) and v = (vy,...,v,) be
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solutions to a system of homogeneous linear equations, and let ayx1 +-- -+ a,z, =0
be any equation in the system. Thus,

ajuy + -+ apu, =0

a1 + - - + a,v, = 0.
Now let A € F' and consider
w4 A= (ug + A, .. Uy + Avy).
The following calculation shows that u + Av is also a solution to the equation

aj(up + Avy) + -+ ap(uy, + Avy) = agug + -+ + aguy, + AMagvr + - + ayvy)
—04+A-0=0.

]

Terminology. Since the solution set to a system of homogeneous linear equations is
a subspace, we usually refer to the solution set as the solution space for the system.

Example. Writing a solution to a system of homogeneous linear equations in vector
form yields a set of generators for the solution space. For example, consider the
system
x +z2z4+w=0

20 +vy —w=~0

3r+y+=z = 0.
We solve the system by performing Gaussian elimination (intermediary steps omit-
ted):

101 110 10 1 110
210 —-11]0 ~ 01 -2 =310
311 00 00 0 010

Converting back into equations and solving for the leading (pivot) variables gives

rT=—Z—w
y =2z + 3w.

So the set of solutions (in parametric form) is

{(=z —w,2z + 3w, z,w) : z,w € R},
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or, written in vector form,

s z,w € R » = Span

_l’_
S
_ O W

The solution space is generated by two vectors.

O =N =

_ o W

35
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Definition. A set S C V is linearly dependent if there exist distinct! uy,...,u, € S,
for some n > 1, and scalars a4, ..., a,, not all zero, such that

aiuy + -+ - + ayu, = 0.
We call the above expression a non-trivial dependence relation among the u;.

Example. The empty set is not linearly dependent.

Example. If 0 € S, then S is linearly dependent. For instance, 1-0 = 0 is a
non-trivial dependence relation.

Example. Let S = {(1,-1,0),(-1,0,2),(=5,3,4)} C R%. Is S linearly dependent?
We look for ay, as, a3 € R such that

ar(1,-1,0) + as(—1,0,2) + as(—5,3,4) = (0,0,0),

i.e., such that
(CLl — a9 — 5@3, —a1 + 3@3, 2&2 + 4(13) = (0, O, 0)

So we are looking for a solution to the system of linear equations

a] — a2—5a3:()

—aq +3G3:O
2a2+4a3:().
Apply our algorithm:
1 -1 =510 1 -1 =510
—1 0 3|0 | =l -1 —2]0 | 22
0 2 410 0 2 410

INote the easily forgotten but necessary word “distinct”, here.

36
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1
r1—7r1+7r2 O
0

r3—r3—2r2

1 -1
0 1
0 2

= DN Ot
o O O
o = O
SN W
o O O

Converting back to a system of equations and solving for the pivot variables gives
ay = 3az, as = —2as,
and ag is arbitrary. Take az = 1 to get the solution a; = 3, ay = —2, and a3 = 1:
3(1,-1,0) — 2(—1,0,2) + (—5,3,4) = (0,0,0).
Therefore, these vectors are linearly dependent.

Proposition 1. Let S C V. Then S is linearly dependent if and only if there
exists v € S such that v is a linear combination of vectors in S\ {v}, i.e., if and only
if v € Span(S \ {v}).

Proof. First note that we may assume S # () since the empty set is not linearly
dependent.
(=) Suppose aju; + -+ + ayu, = 0 for distinct u; € S and a; € F, not all zero.
Without loss of generality, we may assume that a; # 0. In that case, we have

(05} as Qp,

Uy = ———U2— —U3 — * — —Up,
a1 a1 a

expressing u; as a linear combination of elements in S\ {u;}. Note the special case
where S = {0}. The result still holds in that case since {0} = Span(f)). By definition,
the empty linear combination is 0.

(<) Say v = ajuy + - - - + a,u, with distinet w; € S\ {v} and v € S. Then
aur+ - +apu, —v=>0
shows that S is linearly dependent. m

Definition. A set S C V is linearly independent if it is not linearly dependent.
This means that for all n > 1 and distinct uq,...,u, € S, if aju; + -+ + a,u, =0
for some a; € F, then a; = -+ = a, = 0. (In particular, the empty set is linearly
independent. )

Remark. We say there is a linear relation among vectors uq,...,u, if there exist
a; € F such that ajuy + - - + a,u, = 0. The linear relation is trivial if all a; = 0.



Week 3, Wednesday 38

Thus, a subset S of V' is linearly independent if every linear relation distinct elements
of S is trivial.

IMPORTANT. To prove that a set of (distinct) vectors S = {vq,..., v} is linearly
independent start by writing the following:

Suppose that
awl—l—---+&kvk:0

for some aq,...,a;, € F.

The goal is then to use some knowledge you are given about the vectors vy, ..., vx to
show that the relation is trivial, i.e., a; = 0 for all 7.

AVOID. Another way to prove that a set of vectors S = {vy,..., v} is linearly
independent is to suppose that some v; is a linear combination of the vectors in
S\ {vi} or to suppose that there is some nontrivial linear combination of elements
in S, and then show a contradiction arises. Whenever tempted to give such a proof,
check to see if the standard proof, described just above, would be clearer (as it almost
always will).

Examples.

e The set {u} is linearly independent for any nonzero u € V: if Au = 0 for
some A # 0, then scaling by 1/\ would give u = 0. But we are supposing u # 0.
(Here is a case where the indirect proof of independence seems warranted.)

e S={(1,-1,0),(—1,0,2),(0,1,1)} C R is linearly independent. To see this, we
follow the standard proof. Suppose that

a(l,—1,0) + b(—1,0,2) + ¢(0,1,1) = 0,

which means

a— b =0
—a +c=0
2b+c¢=0.

Apply our algorithm (I'll just show the result of row reduction):

1 -1 010 1 0 00
-1 0 1{0 ]~ 010]0
0 2 1|0 0 0 1[0

Thus, the only solution is a = b= c = 0.
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e Theset S={1+z,1+x+2*} C P(R) = R[z]<, is linearly independent. To
see this, suppose that
a(l+2)+b(1+x+2*) =0
for some a,b € R. It follows that
(a+0b)+ (a+b)x + bax* =0,

and, therefore, a + b = 0 (the coefficient the constant term or of the z-term)
and b = 0 (the coefficient of the z2-term). It then follows that a = b = 0.

Problem (leading to an important algorithm). Let
S =1((2,0,0),(0,1,0),(2,2,0),(0,3,1),(3,0,1)) .

Find a linearly independent subset of S and write the remaining vectors as linear
combinations of vectors in that subset.

Solution. Look for linear relations
c1(2,0,0) + ¢2(0,1,0) 4+ ¢3(2,2,0) 4+ ¢4(0,3,1) + ¢5(3,0,1) = (0,0, 0).

Convert the above relation to as system of three homogeneous linear equations in
C1, Ca, C3, C4, C5 and solve:

2020 3|0 1 010 % 0
01 230/0|~[0120 -3|0
000110 0001 110

(Note that the first matrix has the vectors in S as columns.) So the solution space is

3
(—03 5% —2c¢3 + 35,C3,—C5,C5 1 C3,C5 € R) ,

or, in parametric form

C3 1 + cs 263,C5€R

— = O WNlw
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Let T be the set of columns in our original matrix with the same indices as those
for the non-free (i.e., pivot or leading) variables in the row-reduced matrix. In other
words,

2 0 0
T = o, 1], (3
0 0 1

We claim that 7T is linearly independent. Suppose there is a linear relation (switching
to row notation for convenience):

a(2,0,0) +b(0,1,0) + ¢(0,3,1) = 0.

To show that a = b = ¢ = 0 is the only solution, we convert to a matrix and row-
reduce as usual:

200 1 00
013 |~|[0T1P0
0 01 0 01

Therefore, we must have a = b = ¢ = 0, as claimed. Important: In fact, there was
no need to do that last computation since we have already done it. To see that, go
back to our original row-reduction

2 020 3[0 1010 2|0
01230(0]~]0120 =30
00011]|0 0001 110

and only pay attention to the first, second, and fourth columns. So the verification
that T is linearly independent was secretly guaranteed by its construction.

It remains to be shown that the remaining columns (those corresponding to the free
variables), i.e., (2,2,0) and (3,0, 1), in row notation) are in the span of T. We have
found all solutions to

01(2, 0, 0) + CQ(O, 1, O) + 03(2, 2, 0) + C4(0, 3, 1) + C5(37 0, 1) = (O, O, 0) (71)

and found that c3 and c¢; are free variables. To see that (2,2, 0) is in the span of 7', find
the solution to our system for which (es3,¢5) = (1,0), then solve for (2,2,0) in (7.1).
The solution in this case is

(&1 —1
Co -2
C3 = 1
Cy 0

Cy 0
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Therefore,
—(2,0,0) —2(0,1,0) +1-(2,2,0) +0-(0,3,1)+0-(3,0,1) = (0,0,0),

and, thus,
(2,2,0) = (2,0,0) +2(0, 1,0).

Similarly, to show (3,0, 1) is in the span of T, we set (c3,c5) = (0,1). The corre-
sponding solution is

C1 — %
Cy 3
C3 = 0
Cy —1
Cr 1

Therefore,

3
—5(2,0,0) +3(0,1,0) + 0 (2,2,0) = 1-(0,3,1) + 1+ (3,0,1) = (0,0,0),

Solving for (3,0, 1) gives
3
(3,0,1) = 5(2, 0,0) — 3(0,1,0) + (0,3, 1).

We summarize the underlying important algorithm: Let S = {vy,..., v} € F™. To
find a linearly independent subset 7" of S such that Span(7’) = Span(S):

e Let M be the matrix with columns vq,. .., vg.

Compute M’, the row-reduced form of M.

Let ji, ..., jq be the indices of the pivot columns of M’ (the ones containing the
leading 1s).

Set T = {Uj17"'7vjd}'

Note: The set T is a subset of the columns of M not of M’

The elements of S\ T correspond to the free variables, and we can write these elements
as linear combinations of the elements of T" by setting each free variable in turn equal
to 1 and setting the remaining free variables equal to 0.

We end with a result of fundamental importance:

Theorem. Let S C V be linearly independent, and let v € Span(S). Then v
has a unique expression as a linear combination of elements of S. In other words,
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if v = Zle a;u; and v = Zle b;w; for some nonzero a;,b; € F and some distinct
u; € S and distinct w; € S, then up to re-indexing, we have k = ¢, u; = w;, and a; = b;
for all 7.

Proof. Say v = Y " au; and v = Y1 bu; for some a;,b; € F and u; € S. (By
letting some a; and b; equal zero, these expressions represent two arbitrary represen-
tations of v as linear combinations of elements of S, i.e., we can use the same u; and n
for both expressions.) It follows that

n

O =0V —0V= En:aiui — ibluz = Z(CLZ — bz)uz
i=1 =1

=1

Since S is linearly independent, it follows that a; — b; = 0 for all . The result
follows. u

Example. The previous result does not hold if S is linearly dependent. For instance,
consider the set S = {(1,1),(2,2)} C R. Then

1
(3,3) =(1,1)+(2,2) = 2(1,1) + 5(2, 2) =3(1,1) +0(2,2) = etc.
Exercise. Prove that the converse of the previous proposition holds: if each element

of Span S can be expressed uniquely as a linear combination of elements of S, then S
is linearly independent.
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Definition. A subset B C V is a basis if it is linearly independent and spans V.
An ordered basis is a basis whose elements have been listed as a sequence: B =

(by, by, ... ).}

Warning: Our book defines a basis to be what we are calling an ordered basis. That’s
not standard, and there are problems with that idea when talking about infinite-
dimensional vector spaces, which we will not go into here. We will, however, use the
book’s notation of “(” and “)” to denote an ordered basis. Thus, for us, the word
basis will mean “unordered basis”, and we will try to be careful to say “ordered basis”
when relevant (but will sometimes forget).

Examples.

(a) The standard ordered basis for F™ is (eq,...,e,) where the i-th standard basis
vector is ¢; = (0,...,0,1,0,...,0), the vector with i-th component 1 and all
other components 0. For instance, the standard ordered basis for F? is

((1,0,0),(0,1,0),(0,0,1)).
Here is another possible ordered basis for F™:
((1,0,0),(0,1,0),(1,1,1)).
Exercise: check that the above vectors are linearly independent and span F3.

(b) One ordered basis for the vector space Ps3(F') = F[z]|<3 of polynomials of degree
most three is
(1,7, 2%, 2°).

'Every vector space has a basis—we will prove this in the finite-dimensional case. An infinite-
dimensional vector space may not have a countable basis, i.e., one that can be indexed by the natural
numbers. There is a link to a supplemental article at our course homepage, if you would like to
know more.
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(c¢) One ordered basis for, Myy3(F'), the vector space of 2 x 3 matrices over a field F,

1S
100 010 001
M1:(000>,M2:(000),M3:(0 o>’
000 000 000
M4_(100>’M5_(010>’M6_(0 1)'

These matrices span May3(F):
a b c
(d e f>:aM1+bM2+cM3+dM4—|—eM5+fM6.

e
]

=}

o O

To see they are linearly independent, suppose the above sum is 0, i.e., the zero
matrix. Then we must havea =b=c=d=e= f =0.

Last time, we showed the following proposition:

Proposition 1 from previous lecture. Let S C V. Then S is linearly dependent if
and only if there exists v € S such that v is a linear combination of vectors in S\ {v},

i.e., if and only if v € Span(S \ {v}).
We use this result to prove the following:

Proposition 1. Any finite subset S of V' has a linearly independent subset with the
same span. In other words, if S is a finite set, then there is a subset of S that is a

basis for Span(.S).

Proof. If S is linearly independent, we are done. If not, then by Proposition 1 from
the previous lecture, there exists v € S such that v € Span(S \ {v}). It follows
that Span(S) = Span(S'\ {v}). If S\ {v} is linearly independent, we are done. If not,
repeat the above step. The process will end eventually since S is finite. We are OK
even if the process ends at the empty set since the empty set is linearly independent.
(For instance, if S = {0}, our process would end at {).) O

In the above, we create a basis for Span(S) by discarding elements of S. Another
possibility is to start at the empty set and start adding elements S that are linearly
independent of those we have so far. This follows from:

Proposition 2. If 7" C V is linearly independent and v € V' \ T, then T'U {v} is
linearly dependent if and only if v € Span(T).
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Proof. (=) Suppose that v € V'\ {v} and that T'U {v} is linearly dependent. Then
we may write
av + ajuy + - - + au, =0 (%)

for some a,aq,...,a, € F, not all zero, and distinct u; € T. We can always assume
that v appears in this expression by taking a = 0, if necessary. But, in fact, a # 0
since otherwise (x) would be a linear relation among distinct elements of T". Since T'
is linearly independent, this would mean that all the a;, = 0, in addition to a = 0.
However, we know that at least one of these scalars in nonzero.

Thus, it must be that a # 0. We can then solve for v in (x):

a; Ay,
v=——u; — - — —u, € Span(T).
a a

(<) Suppose that v € Span(7’). Then
V=aiuy + -+ auy,
for some a; € F and u; € T. Since v ¢ T, it follows that
ajuy + -+ apguy, + (1) v =0
is a nontrivial relation among elements of TU{v}. So TU{v} is linearly dependent. [J

Alternate proof of Proposition 1. We are starting with a finite set S and looking for
a subset T of S that is linearly independent and generates V' = Span(S). If S = () or
S = {0}, we take T'= () and are done. If not, there exists a nonzero element u; € S,
and we set T' = {u;}. If Span(T) = Span(S), we are done. If not, then there
exists us € S such that us & Span(T'). We then append us to T. Sonow T' = {uy, us},
and by Proposition 2, the set T" is linearly independent. If Span(7') # Span(5), repeat
to find uz € S linearly independent of u; and wus. Etc. Since S is finite, the process
eventually stops. O

Example. Let V = (Z/37)°, a vector space over Z/37Z.

How many elements are in V7 A point in V has the form (21, x9, x3), and there are 3
choices for each z;. Hence, the number of elements in V is |V| = 3% = 27.

As an exercise, check that the following is a subspace of V:
W = {($1,$2,.T3) eV iz + 29 +x3 = O}
How many elements are in W? We have,

W= {(_xQ - $37$2ax3) X9, T3 c Z/3Z} .
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As we let xo and x3 vary, we get 9 elements:
{(0,0,0),(2,1,0),(1,2,0),(2,0,1),(1,1,1),(0,2,1),(1,0,2),(0,1,2),(2,2,2)}.

Let’s try to find a linearly independent generating set for W. Start with vy := (2, 1,0).
The span of {v;} has three elements:

0-(2,1,0) = (0,0,0)

1-(2,1,0) =(2,1,0)

2.(2,1,0) = (1,2,0).
Next, note that vo = (2,0, 1) is not in Span({v; }). By Proposition 2, we see that S :=
{v1,v9} is linearly independent. We claim Span(S) = W. First, since vy,vo € W,
we see Span(S) C W. Next, by Theorem 1, every element of Span(S) has a unique

expression of the form
a1v1 + AV

where ay, as € Z/3Z. Hence, | Span(S)| = 3% = 9. Since Span(S) C W and | Span(S)| =
W1 =9, it follows that Span(S) = W.

Proposition 3. If B is a basis for V, then every element of V' can be expressed
uniquely as a linear combination of elements of B.

Proof. Since B is linearly independent, we've already seen that every element in
Span(B) can be written uniquely as a linear combination of elements of B. Since B
is a basis, Span(B) = V. O

Definition. Let B = (vy,...,v,) be an ordered basis for V. Given v € V, there are
unique aq, ..., a, € F such that

V=a1v] + -+ a,vU,.

The coordinates of v with respect to the basis B are the components of the vec-
tor (ai,...,a,) € F™. We write

[vlg = (a1,...,a,).
Examples.

(a) Let v = (z,y, z) € F3. The coordinates of v with respect to the standard ordered
basis B = (eq, eq, €3) are (x,y, z) since

(z,y,2) =x(1,0,0) +y(0,1,0) + 2(0,0,1) = xe; + yey + zes.
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Now consider B" = ((1,0,0), (1,1,0),(1,1,1)). Then the coordinates of v with
respect to B" are (x — y,y — 2, z) since

(b) Recall the ordered basis (M, ..., Mg) for Mau3(F) defined earlier. Then the
coordinates of the matrix
a b c
d e f

are (a,b,c,d, e, f) € FS.



Week 4, Monday: Dimension I

Recall the following from last time:

o A set B is a basis for V if it

— is linearly independent, and

— spans V.

e If B is a basis for V', each element of V' can be expressed uniquely as a linear
combination of vectors in B.

o If B=(vy,...,v,) is an ordered basis for V', then the coordinates of v € V' with
respect to B are (ay,...,a,) where

V=a1v1 + -+ a,v,.

Example. Find the coordinates of (7, —6) € R? with respect to the ordered basis
B =((5,3),(1,4)).

Solution. We need to find a,b € R such that
(7,—6) = a(5,3) + b(1,4).
Therefore, we solve the system of equations

ba+b=7
3a + 4b = —6.

Applying our algorithm yields a = 2 and b = —3. So the coordinates of (7, —6) with
respect to B are given by (2, —3). We write

[(7,=6)]s = (2,-3).

Figure 9.1 gives the geometry. The basis vectors are in blue, and the red vectors
indicate how (7,—6) is a linear combination of the basis vectors.

48
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-
-’

—3-(1,4) ¥~

Figure 9.1: The coordinates of (7, —6) with respect to the ordered basis ((5, 3), (1, 4)).

Remark. Let B = (vy,...,v,) be an ordered basis for a vector space V. Then taking
coordinates defines a bijective (why?) function

oV = F"
v [v]B.

This function has an important property: it preserves linear structure. By this, we
mean the following: let u,v € V and let A € F'| then we claim that

o(u+ M) = ¢(u) + Ap(v). (9.1)

Note that addition and scalar multiplication happens in V' on the left-hand side of this
equation, and they happen in F™ on the right-hand side. The fact that ¢ is bijective
and preserves linear structure means that as vector spaces V and F™ are “essentially
the same”. We can be more precise when we introduce linear transformations next
week. For now, let us prove that equation (9.1) holds. We express u and v in terms
of the basis:

U= a1v; + -+ ayv,
v =>bwy + -+ byv,.

It follows that
u+ Av = (a1 + Aby)vy + - -+ + (ay, + Aby, ) vy,.
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Then

d(u+ M) = [u+ Mg
= (a1 + Aby, ..., an + Aby)
= (a1,...,an) + A(b1, ..., by)
= [u]s + Alvls
= ¢(u) + Ap(v).

Definition. A vector space is finite-dimensional if it has a basis with a finite number
of elements. If a vector space is not finite-dimensional, it is infinite-dimensional.

Examples. The following vector spaces are finite-dimensional:

— F™ (has a basis with n elements)
— Pu(F) = F[z]<4 (has a basis with d + 1 elements)
— My xn (has a basis with m x n elements)
— C as a vector space over R (basis {1,i}).
The following are infinite-dimensional:
~ P(F) = Flx]
~“RE={f:R >R}
- {f: R — R: f is continuous}
— {f: R = R: f is differentiable}
— R as a vector space over Q

— C as a vector space over Q.

Our goal today is to show that if V' is a finite-dimensional vector space, then every
basis for V' has the same number of elements. Thus, the following definition makes
sense:

Definition. If V' is a finite-dimensional vector space, then the dimension of V,
denoted dim V' or dimg V, if we want to make the scalar field explicit, is the number
of elements in any of its bases.
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Exchange Lemma. Suppose B = {vy,...,v,} is a basis for a vector space V' over
a field F'. Further, suppose that

w=av, +---+av, €V (%)

with a; € F, and such that a, # 0 for some ¢ € {1,...,n}. Let B’ be the set of
vectors obtained from B by exchanging w for v, i.e., B' ;== (B\ {v,})U{w}. Then B’
is also a basis for V.

Proof. We first show that B’ is linearly independent. For ease of notation, we may
assume that ¢ = 1, i.e., that a; # 0. Suppose we have a linear relation among the
elements of B’

bw + byvg + -+ - + byv, =0

Substituting for w:
0 =0b(ajvy + -+ ayvy,) + bovg + - - - + by, = bayvy + (bag + by)vg + - - - + (baz + by, ) vy,.
Since the v; are linearly independent,

ba; = bas + by = --- = ba,, + b, = 0.

Since a; # 0, it follows that b = 0 and then that b = --- = b, = 0, as well.
Therefore, B’ is linearly independent.

We now show that B’ spans V. First, solve for vy in (%):

1 Qa9 an,
V= —W— —Ug — - — — .
aq ai an
To see that B’ spans, take v € V. Since B is a basis, v can be written as a linear
combination of B = {vy,...,v,}, but then substituting the above expression for vy
will express v as a linear combination of B’ = {w,vs, ..., v,}, as required:

V=Cv+ -+ CcpU,

1 as an,
=|—w——v——— Uy | FCUF -+ CyU,
ay aq an
1 as an
=—w+|—+c )+ + | ——FCy | Up.
ai ai a1
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Corollary. Suppose B = {vq,...,v,} is a basis for a vector space V over a field F.
Further, suppose that w € V' is nonzero. Then there exists ¢ € {1,...,n} such that
B':= (B\ {v/}) U{w} is also a basis for V.

Theorem. In a finite-dimensional vector space, every basis has the same number of
elements.

Proof. Let 'V be a finite-dimensional vector space. Among all the bases for V,
let B = {uy,...,u,} be one of minimal size. Since B has minimal size, we know
that n = |B| < |C|. Therefore C' contains at least n distinct vectors wy, ..., w, and
possibly more. (Our goal is to show that, in fact, C' contains no others.)

To take care of a trivial case, suppose B = () (the case n = 0). In that case, we have
V' = Span(C') = Span(B) = Span()) = {6} :

The only linearly independent set whose span is {5} is (). So in this case, 0 = |C| =
|B|, as desired.

Now suppose that n > 1. We would again like to show that C' has the same number
of elements as B. The idea is to start with B, then use the exchange lemma to swap
in the n elements wy, ..., w, from C, one at a time, maintaining a basis at each step.
To that end, let By = B and consider w; € C. By the exchange lemma, we get a
new basis By by swapping w; with some uy, € By. For ease of notation, let’s suppose
that ¢ = 1. Therefore, By = {wy,us,...,u,}. Since B; is a basis for V| it is linearly
independent and V' = Span(B;) = Span(B) = Span(C).
Next, consider wy € C. Since Bj is a basis, we know wy € Span(Bj), hence, we can
write

W9 = A W1 + AU + ... GpU,

for some a; € F. Since w; and wy are linearly independent, at least one of ao,...,a,
is nonzero. Without loss of generality, suppose as # 0. Then by the exchange
algorithm, Bs := {wy, ws, us, ..., u,} is a basis. Continuing in this way, we eventually
reach the basis B, = {w,...,w,} C C. In fact, we must have B, = C. Otherwise,
there is a w € C'\ B,. Since B, is a basis, w € Span(B,), in other words, w =
Z?:l d;w; for some d; € F. But that can’t happen since C' is a basis: it’s elements
are linearly independent. So, in fact, C also has n elements. n

Remark. If V is infinite-dimensional, it turns out that any two bases have the same
cardinality. The above proof does not work to prove that, though.
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Last time, we showed that if V' is finite-dimensional, then all of its bases have the
same number of elements. Then, by definition, the number of elements in any basis
for V' is the dimension of V.

Examples.

dim F = n (for instance, {e,...,e,} is a basis).

— dim Py(F) = dim Fz]<g = d + 1 (for instance, {1, z,...,2%} is a basis).

dim{(z,y,2) € F3: x +y+ 2z = 0} = 2 (for instance, {(1,0,-1),(0,1,—1)} is
a basis).

— dimg C = 2 (for instance, {1,i} is a basis).
— dim¢ C =1 (for instance, {1} is a basis).

— dim{0} = 0 (the basis is §), which has 0 elements).
Corollary. Let V be a vector space of dimension n. Then

(a) If S C V is linearly independent, then S has at most n elements.

(b) If S C V is linearly independent, then S can be completed to a basis for V, i.e.,
there exists a basis containing S as a subset.

(c) If S has n elements, then S is linearly independent if and only if it spans V.
(d) If S spans V, then S has at least n elements.

(e) A basis is a minimal spanning set for V. (Here, “minimal” can mean the set
has no strict subsets that also span V, or it can mean minimal in number of
elements.)

53
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(f) A basis is a maximal linearly independent subset of V. (Here, “maximal” can
mean there is no strict superset that is also linearly independent, or it can mean
maximal in number.)

Example. Before proving the Corollary, here is an example of its use. Prove
that {(5,3), (1,4)} is a basis for R?. Since dim R = 2, we just need to check that these
two vectors are linearly independent (by part (c)). Since neither is a scalar multiple
of the other, we are done.

Proof. (a) Here we repeat the key idea of the proof from last time showing that all
bases have the same number of elements. If S = (), we are done. Otherwise,
say S = {si1,...,s,} for some k > 1. We know that V' has some basis C' =
{v1,...,v,}. Since V = Span(C'), we can write

S1 = a1v1 + -+ apty.

Since S is linearly independent, s, # 0, and hence, some a; # 0. Without loss
of generality, say a; # 0. By the exchange lemma, we can swap s; for v; in C' to
get a new basis C" = {s1,v9,03,...,0,}.

If £ > 2, since (" is a basis, we can write
5o = b151 + bovg + - - - + byuy,.

Since s; and s, are linearly independent, at least one of by, ..., b, is nonzero. For
convenience, say by # 0. By the exchange lemma, the set C” = {s1, $2,v3,...,0,}
is a basis. We can repeat this process until all elements of S have been swapped
into C, thus showing that k < n, as required.

(b) If V.= Span(S), we are done. If not, take v € V'\ Span(S). By an earlier result,
SU{v} is linearly independent. We can repeat this process, but once we reach n
elements, the process stops by part (a).

(¢) (=) Suppose that S is linearly independent. By part (b), we can complete S
to a basis B. Since dimV = n, we know that |B| = n. So we have S C B
and |S| = |B| = n. It follows that S = B is a basis, and hence, it spans V.

(<) Suppose V' = Span(S). We saw in an earlier lecture that there is a linearly
subset of S’ of S with the same span as S. Since S’ is linearly independent
and V = Span(S) = Span(S’), it follows that S’ is a basis, and hence |S’| =
dimV = n. Since 8" C S and n = |S'| = |9], it follows that S’ = S, and
therefore, S is linearly independent.
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(d) If Sisinfinite, there is nothing to prove. Otherwise, by removing elements from S
we can find a linearly independent subset S’ C S with the same span. Then S’
is a basis for V' and hence has n elements. Since S" C S, we have n = |S’"| < |S].

(e) HW.

(f) HW.
Example. Prove that {(3,1,2),(1,0,—1),(—1,2,4),(1,3,0)} C R? is linearly depen-
dent.
Solution. Since dim R® = 3, a linearly independent set has at most 3 elements. n

Extra time activity. Let F' = Z/3Z, and consider the following twelve points in F'*:

(1,1,2,1) (1,1,2,0) (2,1,2,1)
(1,1,0,1) (2,0,1,0) (1,0,1,1)
(2,1,1,0) (1,2,0,0) (1,2,2,1)
(1,2,0,1) (2,0,1,1) (0,0,2,2)

Goal: find subsets of size three of this array that sum to (0,0,0,0).

All solutions:
e (1,1,2,1),(1,0,1,1),(1,2,0,1)
e (1,1,0,1),(1,0,1,1),(1,2,2,1)
e (2,1,1,0),(1,2,0,1),(0,0,2,2)

Observations:

e Three vectors sum to zero if and only if in each component, the entries are either
all the same or all different. For example, in the solution (2,0,0,1),(2,0, 1,2),(2,0,2,0),
the entries in the first component are all 2, the entries in the second component
are all 0, the entries in the third and fourth components are 0, 1, 2—all different.

o If u,v,w is a solution so that u + v + w = 0, consider the value of

u+t(v—u)
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as t varies among the element of /. When ¢t = 0, we get u. When t = 1, we
get v, and when t = 2, we get

ut+2v—u)=—-u+2v=—-u—v=uw,

recalling that 2 = —1 in ' = Z/3Z. We may think of ¢(v — u) as determining a
line through the origin as ¢ varies. So then u + ¢(v — w) is that line translated
by the vector u. So finding these triples of points whose sum is zero is the same
as finding lines in F** containing the three points.
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Relation to the game Set (number-1, shading, color, shape):
ap| || |UD
(I
(1,1,2,1) (1,1,2,0) (2,1,2,1)
<
(1,1,0,1) (2,0,1,0) (1,0,1,1)
T o> @
[ﬁ] ‘@] H
(2,1,1,0) (1,2,0,0) (1,2,2,1)
O
-,
(1,2,0,1) (2,0,1,1) (0,0,2,2)




Week 4, Friday: Row and column spaces

Row rank and column rank.

Definition. Let A be an m x n matrix over F. The row space of A is the subspace
of F™ spanned by its rows, and the column space of A is the subspace of F™ spanned
by its columns. The row rank of A is the dimension of its row space, and the column
rank of A is the dimension of its column space.

Since row operations are reversible, any matrix obtained from a matrix A by per-
forming row operations has the same row space. In particular, the row space of A
is the same as the row space of its reduced echelon form. From the structure of the
reduced echelon form, it’s clear that its nonzero rows form a basis for its row space.
To summarize:

The nonzero rows of the reduced echelon form of A form a basis
for the row space of A.

This gives an algorithm for computing a basis for the row space of a matrix.

ALGORITHM FOR COMPUTING A BASIS FOR THE ROW SPACE AND THE ROW RANK.
Given an m x n matrix A, compute its reduced echelon form E. Then the rows of E

are a basis for the row space of A. The number of nonzero rows in E is the row rank
of A.

Example. Let

A:

~N W
oo W N
N = O
>~ O

To compute a basis for the row space of A, compute its reduced echelon form:

2
1 20 4 Lo 3 —4
A=|3310|—E=[01 -1 4
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So a basis for the row space of A is:

{(]‘70’ %7

1) (0.1, -.9)}.

59
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Proposition. Let A be an m x n matrix with columns Ay, ..., A, € F"™. Let A be
any matrix formed from A by performing row operations, and let Ay,... A, € F™
be its columns. Let x1,...,x, € F' be any scalars. Then

1AL+ -+ 2,A, =0 if and only if $1A1+---+$n1‘~1n:0-

Proof. Write out the relation z1A4; + - -+ + x,,A,, = 0 longhand:

ail A1n
21 QA2n
1 : + 4z, : = 0.
Am1 Qmn
Adding up the left-hand side, we see the relation is equivalent to a solution (z1, ..., z,)

to the linear system

a11T1 + -+ ATy = 0

Q11 + - + G, = 0.

Or result follows since row operations do not change the set of solutions to a system
of equations. 0

Corollary. Let E be the reduced row echelon form of a matrix A, and suppose

the basic (pivot) columns have indices ji,...,7,. Then the columns of A indexed
by j1,..., . form a basis for the column space of A.
Proof. For ease of notation, assume j; = 1,j5 = 2,..., 5, = r, i.e., the first  columns

of E are the pivot columns. For instance, in the case m =5, n =7, and r = 3, the
matrix £ would have the form

1 0 0 % % % x
0 1 0 % *x % =%
0 01 % % % %
0 00O0O0O0TO O
000 O0O0O0TO O

where the *s are arbitrary scalars.

Let Ey, ..., E, denote the columns of E, and let Ay,..., A, denote the columns of A.
It is clear that Fi, ..., E, form a basis for the columns space of £. We need to show
that Ay, ..., A, form a basis for the columns space of A. So we need to show A4, ..., A,
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are linearly independent and span the column space of A. For linear independence,
suppose that
.T1A1+"'+.’L'TAT = 0.

for some x; € F'. Then, by the Proposition,
$1E1+"’+.T7«Er =0.

Since Fi, ..., FE, are linearly independent, it follows that z; = --- = z, = 0, as
desired. Next, to show A;q,..., A, span the column space of A, it suffices to show
that every other column of A is in the span. So consider a column A; with j > 7.
Since Fy, ..., E, form a basis for the column space of F, we can find scalars cq, ..., ¢,
such that

Ei=cb +--+ckE,.

Rewriting this equation, we get
abi+--+cb —FE; =0.
It then follows from the Proposition that
A+ +cA —A; =0,
which implies
Aj=cAi+--+cA — A
So A; is in the span of Ay,..., A,. O

We turn the Corollary into an algorithm:

ALGORITHM FOR COMPUTING A BASIS FOR THE COLUMN SPACE AND THE COL-
UMN RANK. Given a matrix A, compute its reduced echelon from FE. Say that
columns ji, ..., j. are the basic columns of F (those corresponding to the non-free
variables—the one that have a single non-zero entry and that entry is equal to 1.
Then columns jq,...,J, are a basis for the columns space of A. The column rank
of A is r, the number of basic columns of its reduced echelon form.

WARNING: Be sure to take columns ji, ..., ji of the orginal matrix, A, not of the
echelon form, E. (So computing a basis for the row space is little easier, since it does
not require this last step.)

Example: In the previous example, we computed the reduced echelon form of a
matrix:

2
1 20 4 Lo 3 —4
A=|3310|—E=[01 -1 4
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The first two columns of E are its basic columns. Therefore, the first two columns
of A form a basis for its column space:

1 2
3 ].( 3
7 8

NOTE: The first two columns of E in this case are the first two standard basis vectors,
which clearly don’t have the same span as the above two vectors.

A consequence of our discussion above is the following, rather surprising, result:
Theorem. The row rank of a matrix A is equal to its column rank.

Proof. Let E be the reduced echelon form of A. Then the number of its nonzero
rows is equal to the number of its basic columns. O

Definition. The rank of a matrix A, denoted rank(A) is the dimension of its row
space or column space.

Suppose we have a homogeneous system of linear equations

a11711 + -+ aypx, =0

A1 Tm + * +* + QnTn = 0.

Let A = (a;;) be the matrix of coefficients. To solve the system, we compute the
reduced echelon form of the matrix A. The number of free parameters for the solution
space is then the number of non-basic columns, i.e., n — rank(A). There is a unique
solution 0 exactly when the reduced echelon form is the matrix with 1s along its
diagonal and 0Os, otherwise, i.e., exactly when there are no non-basic columns. Hence,
there is only the trivial solution if and only if rank(A) = n.

For a non-homogeneous system

ani + -+ aps, = by (11.1)

1T+ + Ty = bn

we would compute the echelon of the augmented matrix [A|b] where b is the column
with entries by,...,b,. If the system is consistent, we have seen that the set of
solutions consists of any particular solution plus any vector in the span of n —rank(A)
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vectors that are solutions to the corresponding homogeneous system. So if the system
is consistent, there is a unique solution if and only if rank(A) = n.

Summary. The system (11.1), above, has a unique solution if and only if it is
consistent and rank(A) = n. In the case by = - - - = b, = 0, the system is homogeneous
and, thus, consistent (r; = --- = x, = 0 is a solution). So in the homogeneous case,
there is a unique solution if and only if rank(A) = n.
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Linear transformations. We have now defined the objects of study—vector spaces.
Next, we need to consider the appropriate mappings between those objects—those
that preserve the linear structure.

Definition. Let V and W be vector spaces over a field F. A linear transformation
from V' to W is a function
V=W

satisfying, for all v,v’ € V and A € F,
flo+0) = fv)+ f()) and f(l) = Af(v).
Remarks. Using the notation from the definition:

o If flu+7') = f(v)+ f(V'), we say f preserves addition. Note that the addition
on the left side is in V' and the addition on the right side is in W. Thus, if
V' # W, they are two different operations (with the same name). Similarly,
if f(Av) = Af(v), we say f preserves scalar multiplication.

e One may combine the two conditions, above, for linearity into one: for f to be
linear, we require

flo+ M) = f(v) + Af (V)
for all v,v’ € V and X € F.

e Synonyms for “linear transformation” are: “linear mapping” and “linear homo-
morphism”, often with the word “linear” dropped when clear from context (and
it will be since this is a course in linear algebral).

e Our book restricts “linear transformation” to mean a linear transformation of
the form f: V — V, where the domain and codomain are equal. That is non-
standard, and we won’t use that terminology. Linear mappings from a vector
space to itself are called linear endomorphisms or linear self-mappings.

64
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Template for a proof that a mapping is linear. Consider the function
f:R® = R?
(2,y,2) = (22 + 3y, +y — 32).

Claim: f is linear.
Proof. Let (z,y,z2),(x',y',2') € R® and \ € R.

f(zy,2) + (@Y, 7)) = fla+ 2" y+ 9,2 +2)
=Q2@+2)+3y+y),(x+2)+ w+vy)—3(z+72))
= (22 +3y) + (22" + 3y), (x + y — 32) + (' + ¢ — 32))
=2z 43y, 4+y—32)+ (22 + 3y, 2" +y — 32"
= f(z,y,2) + f(2",y, 7).

Thus, f preserves addition. Next,

fMz,y,2)) = f(Az, Ay, A2)
= (2(A2) +3(Ay), (Az + Ay — (3A2))))
= (AM2x 4 3y), ANz +y — 32))
= A2z +3y,x +y — 32)
= M(z,y, 2).

Thus, f preserves scalar multiplication.

Note: People sometimes confuse proofs that subsets are subspaces with proofs that
mappings are linear. To prove that W C V is a subspace, we show that W is
closed under addition and scalar multiplication by taking u,v € W and A € F' and
showing u+Av € W. To prove f: V — W is linear, we show that f preserves addition

and scalar multiplication. Be careful not to confuse the words “closed under” with

“preserves”.

Example. Rotation about the origin in the plane R? is a linear transformation:
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EXERCISE. Show that f: R — R defined by f(z) = z? is not linear.

Proof. We have f(1+1)=f(2)=4# f(1)+ f(1)=1+1=2. O
The following proposition is often useful for showing a function is not linear.
Proposition 1. If f: V — W is linear, then f(0y) = Oy .

PROOF. Since f is linear,

—

f(Ov) = £(0-0v) =0- f(Oy) = Ow.
Thus, for instance,
f:R* =R
(x,y) —x+2y+>5
is not linear since f(0,0) =5 # 0.

Proposition 2. (A linear mapping is determined by its action on a basis.) Let V
and W be vector spaces over F', and let B be a basis for V. Foreach b € B, let w, € W.
Then there exists a unique linear function f: V' — W such that f(b) = wy.

Proof. We define f as follows: Given v € V, since B is a basis, we can write v =
aby + -+ + agby for some o; € F, b, € B, and k € Z>(. Define

f) :=aif(by) +...apf(bp) = arwp, + -+ + apwy,.

Since B is a basis, the expression for v as a linear combination of elements in B is
unique. Hence, f is well-defined. Further, linearity of f forces us to define f(v) as
we have. To see that f is linear, let v,w € V and A € R. Write v and w as linear
combinations of the basis vectors:

U:a1b1+---+akbk
w = Piby + - + Brby

for some scalars «; and ;. It follows that
v+ Aw = (a1 + AB1)by + - - + (o + ABk) by
Using the definition of f, we see

fv+ dw) = (a1 + ABr)wp, + -+ + (e + ABr)wp,
= (alwbl + -+ akwbk) -+ A(ﬂlwbl + -+ 5kwbk)
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— f(0) + Af(w).
[l

Terminology. We say the function f as in Proposition 2 has been defined on B then
extended linearly to all of V.

Example. Define a linear function f: R?* — My, 3(R) by

f(1,o>:<:1)) Y 3) and f(O,l):(g ; ?)

What is f(2,—1)?

Solution. In general, we have

f(x,y) =f (:L‘(l,()) + y(Oa 1))
= xf(L 0) + yf<07 1)

(L0 2y, (210
—Tl3 21 2 Y\Vo 31

[ v+ 2y Y 2z
- 3r  —x+3y 2x+y )’

In particular,

1 0 2 210 0 -1 4
f(z’_l)_2(3 -1 2)‘(0 3 1)_(6 —5 3)'
Question. What goes wrong if we try to define a linear function by specifying its

values on a non-basis? For instance, what happens if we try to define a linear function
f: R? = R? by specifying the values for the non-basis {(1,0),(2,0)} as follows:

f(1,0) =(3,2) and f(2,0)=(1,1).

Note. Let V and W be vector spaces over I, and let X be a linearly subset of V.
For each x € X, let w, € W. Then there exists a linear function f: V — W such
that f(z) = w, for all x € W. To see this, let B be any completion of X to a basis
for V', and apply Proposition 2. The map created this way is not unique: we are free
to choose any values for elements of B\ X (the value 0 might be a natural choice).

Here is something interesting that we will talk more about later:
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Definition. Let V and W be vector spaces over F. The collection of all linear
functions from V' to W is denoted Hom(V, W) or L(V, W). It is a vector space over F’
under addition and scalar multiplication of functions: for linear f,g: V — W,

fHrg: V=W
v f(v) + Ag(v).
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Recall the definition of a linear function from last time: a function f: V — W
between vectors spaces V and W over the (same) field F'is a function f: V' — W that
preserves addition and scalar multiplication. In detail, this means that for all u,v € V
and A\ € F,

flutv)=f(u)+f(v) and  fAv) = Af(v).

Definition /Proposition 1. Suppose f: V — W is linear and U C V is a subspace
of V. Then the image of U under f is the set

JU) = {f(w) s ue U} CW.
The image of U under f is a subspace of W.

Proof. Since U is a subspace of V, it follows that 0y € U, and hence, f(0y) = Oy €
f(U). Thus, f(U) is nonempty. Next, let z,y € f(U), and let A € F. By definition
of f(U), there are vectors u,v € U such that f(u) = x and f(v) = y. Then since f is
linear, is preserves addition and scalar multiplication. Therefore,
T+ Ay = f(u)+ Af(v)
= f(u) + f(Av)
= f(u+ Mv).

Since U is a subspace, it is closed under addition and scalar multiplication. There-
fore, u + Av € U. It follows that  + Ay = f(u+ Av) € f(U), as required. O

In particular, since V' is a subspace of itself, its image under a linear function is a
subspace of the codomain of the function.

Definition. The ¢mage or range of a linear function f: V' — W is the subspace
im(f) = R(f) == f(V) = {f(v) 0 €V} C W

69
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The dimension of the image of f is the rank of f (provided it is finite-dimensional)

and is denoted rank(f) or rk(f).

Example. Define a linear function f: R? — R? by letting f(1,0) = (2,1,0) and f(0,1) =
(0,—1,1) and extending linearly. Thus, for all z,y € R,

flz.y) = f(2(1,0) +4(0,1))
- xf(L 0) + yf(07 1)
= 2(2,1,0) + (0, —1,1).

We have
im(f) = R(f) =Span{(2,1,0),(0,-1,1)}.

Since (2,1,0) and (0, —1,1) are linearly independent and span the image, they are a
basis for the image of f, and thus, rank(f) = 2.

Remark. If f: V — W is a linear function, and B is a basis for V, then
im(f) = Span(f(B)).

To see this, let w € im(f). Then there exists v € V such that w = f(v). Since B is
a basis, there exists by, ..., € B and aq,...,a; € F such that v = Zle a;b;. Then
since f is linear,

w=fv)=f (Z aibi> = Zaif(bi) € Span(B).

Note, however, that f(B) is not necessarily a basis for im(f).

Example. Consider the function f: R?* — R? given by f(z,y) = (2,0), and let B =
{(1,0),(0,1)} be the standard basis for R?. Then

f(B> = {f(1>0)7 f(07 1)} = {(1’ 0)7 (070)}

Although f(B) spans im(f), it is not linearly independent and is thus not a basis for
im(f).

Definition/Proposition 2. Let f: V — W be a linear mapping, and let U be a
subspace of W. Then the inverse image of U under f is the set

U ={v eV fv) U C V.

The inverse image of U under f is a subspace of V.
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Proof. Since U is a subspace of W, we know Oy € U. Then, since f(0y) = Oy, it
follows that Oy € f~1(U). So f~}(U) is nonempty. Next, let v,v' € f~1(U), and
let A € F. It follows that f(v) € U and f(v’) € U. Since U is a subspace, it follows
that f(v) + Af(v") € U. Since f is linear,

flo+X') = fv)+ Af(v') e U
It follows that v+ A\v' € f~1(U). O

Definition. Let f: V — W be a linear mapping. The kernel or nullspace of f,
denoted ker f or N'(f), respectively, is the inverse image of {Oy }:

ker(f) = N(f) == " ({ow}) = {v € V' f(v) = 0}.

It is a subspace of V' (by Proposition 2). The dimension of the kernel is called the
nullity of f (provided it is finite-dimensional) and is denoted nullity(f).

Example. Consider the linear mapping
f:R? 5 R?
(.T, y) = (21" r—=Y, y)

To find the kernel of f, we look for vectors (z,y) such that

f(xvy) = (2$,ZE - y7y> = (O’ 070)'

Comparing vector components, we see that z = y = 0 is the only possibility. There-
fore,

ker(f) = {(0,0)},
and nullity(f) = 0.

Example. Let R[z]<s denote polynomials in = of degree at most two and with real
coefficients. Consider the linear mapping

fﬁ R[JI]SQ —>R2
a+br +cx?*— (a+b,a+c).

To find the kernel of f, we need to find a, b, ¢ such that f(a+ bx + cx?) = (0,0). This
amounts to solving the system of equations

a+b=0
a+c=0.
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Apply our algorithm:

1100->10 110 (%)
1 0 1]0 01 —-1]0 )"

Solving for the pivot variables, we get

Therefore,
ker(f) = {—c+cx+cz’:c€R} =Span{—-1+z+2°}.

Therefore, the nullity of f is dim(ker(f) = 1. A basis for R[x]<, is the set {1, x, 2%},
and the image of these vectors forms a basis for the image of f:

f(l) = (17 1)7 f(x) = (170)’ f(xQ) = <O7 1)'

So the image of f is the column space of the matrix for the linear system we solved
to find the kernel (cf. Equation (x)). Using our algorithm for finding the basis of
the column space, we get the basis {(1,1),(1,0)}. Another basis is {(1,0),(0,1)}.
Therefore, the rank of f is rank(f) = 2.

Our main goal next time will to prove the following:

Theorem. (Rank-nullity theorem) Let f: V' — W be a linear mapping, and suppose
that V' is finite-dimensional. Then

rank(f) + nullity(f) = dim V.

In other words, dim(im(f)) + dim(ker(f)) = dim V.

Example. In the previous example, we found

rank(f) + nullity(f) = 2+ 1 = 3 = dim R[z] <.
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Let f: V — W be a linear mapping between vectors spaces V and W over a field F'.
Recall the definitions from last time:

Definition. The kernel or null space of f is

N(f) :=ker(f) :== [T ({Ow}) :={v e V: f(v) =0}.
The nullity' of f is the dimension of the kernel.
The image or range of f is
R(f) =im(f) = f(V) ={flv) e W:veV}.
The rank of f is the dimension of the image.

Theorem. (Rank-nullity theorem) Let f: V' — W be a linear mapping, and suppose
that V is finite-dimensional. Then

rank(f) + nullity(f) = dim V.

In other words, the dim(im(f)) + dim(ker(f)) = dim V.

Proof. Let K = {vy,...,ux} be a basis for ker(f) (and therefore, nullity(f) = k).
Complete K to a basis for V:
B=A{v1,..., 06 Us1,---,Un}.

To prove the theorem, it suffices to show that { f(vg11), ..., f(v,)} is a basis for image( f).
We first show linear independence. Suppose that

a1 f(Vrg1) + -+ anf(vn) = Ow.

Don’t confuse this concept with the mullity of f, defined as follows: mullity(f) = p(f) + b(f)
where p(f) is the amount of party of f in the back and b(f) is the amount of business of f in the
front.
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Since f is linear, it follows that

flags1ver + - 4+ anvn) = a1 f(Vks1) + - + anf(v,) = Oy

Therefore, ag1vk1+- - +a,v, € ker(f). Since K = {vy,..., v} is a basis for ker(f),
there are scalars aq, ..., a; such that

Ap4+1Vk+1 + -+ anU, = A1V + -+ arUg,

ie.,
a1V + -0+ ARV = Qg1 Vkg1 — 00— AnUp = Oy,
This is a linear relation among the vectors of B, the basis we constructed for V.

Since B is a linearly independent set, all of the a; must be 0. In particular, a1 =
-+ =a, =0, as we were trying to show.

Next, we show that {f(vgi1),..., f(vn)} spans im(f). We know that since B =
{v1,...,v,} is a basis for V' that

{f<v1)a s 7f(UTL)}

spans the image of f. However, vy, ..., v are in ker(f), so

im(f) = Span {f(v1),..., f(vx), f(Vks1),. .-, f(vn)}
= Span {OW, oo, Ow, f(Uk+1>7 ce f(vn)}
= Span{f<vk+1>> s 7f<vn>} :

]

Proposition 1. The linear mapping f: V' — W is injective (i.e., one-to-one) if and
only if ker(f) = {0y }.

Proof. (=) First suppose that f is injective, and let v € ker(f). Therefore, f(v) =
Ow. We also know that since f is linear, f(0y) = Ow. So f(v) = Ow = f(Oy).
Since f is injective and f(v) = f(Oy), it follows that v = Oy. We have shown that
ker(f) = {0y }.

(<) For the converse, now suppose that ker(f) = {0y}, and let u,v € V with f(u) =
f(v). It follows that f(u—wv) = f(u) — f(v) = Ow. Hence, u — v € ker(f). However,
we are assuming ker(f) = {0y }. So u — v = Oy, which means u = v. Therefore, f is
injective. [

Proposition 2. Let S C V.
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(a) If S is linearly dependent, then f(S) := {f(s) : s € S} C W is linearly depen-
dent. (The image of a dependent set is dependent.)

(b) If f isinjective and S is linearly independent, then f(S) C W is linearly indepen-
dent. (The image of an independent set is independent provided f is injective.)

Proof. Suppose that Zle a;s; = Oy for some a; € F and s; € S. Since f is linear,
we have

Ow = f(Ov) = F(CL, assi) = 2oiy aif(s0).
Thus, f preserves linear dependencies, as claimed in part (a).

Suppose now that f is injective and S is linearly independent. If Zle a; f(s;) = Ow
for some a; € F and s; € S, then since f is linear,

Ow = Yoy aif (s:) = F(5, aisi).

Therefore, Zle a;s; is in the kernel of f. Since, f is injective, ker(f) = {0y} by
Proposition 1. It follows that Zle a;s; = Oy. Then, since S is linearly independent,
it follows that a; = 0 for all 7. This shows that f(5) is linearly independent. O]

Definition. The linear function f: V' — W is an isomorphism if there exists a linear
function g: W — V such that go f =idy and f o g = idy. The function g is called
the inverse of f.

Remark. Suppose that f: V — W is an isomorphism. Then, just as proved in
Math 112 for mappings of sets, it follows that f is bijective, i.e., both injective and
surjective. For mappings of sets, being bijective is equivalent to having an inverse.
The same is true for mappings of vector spaces: A linear function f: V — W is
an isomorphism if and only if it is bijective. It turns out that if a linear function

is bijective, then its inverse mapping (as a mapping of sets) is automatically linear.
(Check this for yourself.)

Example. The space of 2 x 2 matrices over F is isomorphic to F*. One isomorphism

is given by ,
a
(c d)t—)(a,b,c,d).

Exercise. Write V' ~ W if there is an isomophism V' — W. Check that ~ is an
equivalence relation.

Proposition 3. A linear mapping f: V — W is an isomorphism if and only
if ker(f) = {0y} and im(f) = W, (i.e., if and only if its kernel is trivial and it

is surjective).
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Proof. We have just seen that ker f = {0y} if and only if f is injective, and by
definition of surjectivity, f is surjective if and only if im(f) = W. Thus, the condition
that ker(f) is trivial and im(f) = W is equivalent to the bijectivity of f. O

Theorem 4. Let V be a vector space over F'. Then V is isomorphic to F™ if and
only if dimV = n.

Proof. (=) Suppose that f: V — F™ is an isomorphism with inverse g: F™ — V|
and let ey, ..., e, be the standard basis for F". Define v; = g(e;) € V fori=1,...,n.
We claim that B := {vy,...,v,} is a basis for V' (and hence, dimV = n). First
note that B is linearly independent by Proposition 2 (a) since {ey,...,e,} is linearly
independent. Next, to see that B spans, let v € V', and write

fo) =) awe
i=1
for some q; € F'. It follows that
v=g(f(v) =g (> aei) = >0, aiglei) = Y i, aiv; € Span(B).

(<) Now suppose dim V' = n. Choose a basis {by,...,b,} for V, and let {e1,...,e,}
be the standard basis for F". Define f: V — F™ by f(b;) = ¢; fori =1,...,n and
extending linearly. Recall what this means: given v € V, there are unique a; € F
such that v = > | a;b;. Then by definition of “extend linearly”,

f(v) :Zaif(bi) :Z@iei: (a1,...,an) € F™.
i—1 i—1

Earlier, we called (ay,...,a,) the coordinates of v with respect to the ordered basis
(by, ..., by).

Suppose v € ker(f), and write v = Y a;b;. Then Oy = f(v) = > we; im-
plies a; = 0 for all ¢ since the e; are linearly independent. So v = 0y. This shows
that the kernel of f is trivial, and hence, f is injective. For surjectivity, note that

the image contains all linear combinations of the standard basis vectors, eq,..., e,
for F™. O]
Remarks: Theorem 4 says that for each n = 0,1,2,..., there is essentially only

one vector space over F' of dimension n. More precisely, under the equivalence rela-
tion V' ~ W defined earlier, there is one equivalence class for each natural number n.
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Theorem 4 and its proof say that the difference between a vector space V of di-
mension n and F™ is the choice of a basis. Once a basis B is chosen, we get an
isomorphism V' — F™ by sending each vector to its coordinates with respect to B:

V= F"
v [v]B.

The practical importance of this result is that if we have a problem involving vectors
in V, we can use the isomorphism to translate problem into one about n-tuples in
EF™. We apply our algorithms, e.g., Gaussian elimination, to solve the problem in F™
and then use the inverse of the isomorphism to translate the solution back to V.

Corollary 5. Let V and W be finite-dimensional vectors spaces. Then V and W are
isomorphic if and only if they have the same dimension.

Proof. First, suppose that f: V — W is an isomorphism, and let by, ..., b, be a basis
for V. By Proposition 2, f(by),..., f(b,) are linearly independent, and since f is
surjective, they span W. So {f(b1),..., f(bs)} is a basis for W. Thus, the number
of elements in a basis for V' is the same as the number of elements in a basis for W,
which says that dim V' = dim W.

Conversely, suppose that dim V' = dim W = n. By Theorem 4, we have isomorphisms
fvr:V— F"and fiy: W — F™. Let fv_vlz F™ — W be the inverse of fy . It follows
that the composition,
-1
LNy ST 17
is an isomorphism. (From Math 112, you know that a composition of bijections of
sets is a bijection of sets, and you should do the easy check that a composition of
linear functions is linear.) O

Proposition 6. Let f: V — W be a linear function, and let dimV = dim W < oc.
(An important special case is f: V' — V when dim V' < 00.) Then the following are
equivalent:

(a) f is injective (1-1),
(b) f is surjective (onto),
(c) fis an isomorphism.

Proof. The proof is left as an exercise. The central idea is to use the rank-nullity
theorem to relate injectivity and surjectivity. O]
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Note: Proposition 6 is not true if the dimensions of V' and W are not finite. For
instance, consider the infinite-dimensional vector space P(F') = F[z] and the mapping

fe=xf,
given by multiplication by x. For instance, under this mapping, 1+z+x? — z+x%+23.

This mapping is linear and injective, but not surjective. For instance, 1 is not in the
image (nor is any other constant besides 0).



Week 6, Monday: Linear transformations and matrices I

Our next goal is to encode linear functions by matrices. We first treat the special case
of linear functions of the form F™ — F™. Next, we consider linear functions V. — W
between general finite-dimensional vector spaces. If dimV = n and dim W = m we
saw last time that a choices of bases give isomorphisms V' ~ F"™ and W ~ F™, which
reduces the problem to the special case.

MATRICES FOR LINEAR FUNCTIONS F" — F"™. The dot product of vectors (a4, ..., a,)

and (by,...,b,) in F™ is defined by

n

(al,...7an)-(b1,...,bn) = Zaibi:a1b1+"'+anbn-

=1

From now on we make adopt the convention of identifying vectors (aq,...,a,) € F"
with n x 1 matrices, also called column vectors:

a1

Qnp

If A€ Mpun(F)and z = (21,...,2,) € F", we define Ax € F™ to be the element of
F™ whose i-th component (Ax); is the dot product of the i-th row of A with x:

alq aig ... QA1n 1 111 + a19T9 + - - - + a1y
921 929 Ce Qon ) a1 + a929T9 + -+ aA92p,Tn
Ax = . . . . =
Am1 Am2 - Qmp Tn 121 + Q22 +---+ AmpnTn
= (CLHJ}l + aj9re + -+ -+ A1nlyp, 2171 + a9y + -+ - + ATy« oy A1 1 + Qoo +

The latter equals sign is just making the identification of column vectors with elements

79

e + amn‘xn)‘
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of F™. Equivalently,

a1 a12 Q1n

a1 a22 A2p
Ax =1 + 9 4+ 4z,

am1 Am2 Amn

We could similarly, convert the above notation into a statement about a linear com-
bination of m-tuples in F™ instead of using column vectors.

Definition. Let A € M,,.,(F'). The linear associated with A is

Ly: F*" — F™
T — Azx.

Exercise. The reader should perform the routine check that L, is a linear function:
La(x+ Ny) = La(x) + ALa(y).

Examples.

(1) The matrix

2 -5 4
A‘(s 0 2)

has corresponding linear mapping

La: F? — F?

2z — 5y + 4z
(@y.2) = ( 3¢ + 22 )

Recall that we are identifying To save space, we could we will write this as

Ly: F? — F?
(z,y,2) = (2 — by + 4z, 3x + 2z).

(2) Note that if you were given the linear function L4, you could easily recover the
matrix: just read off the coefficients of each component of L4(z) to find the rows
of A. (We will see another way of recovering A below.) For example, find the
matrix corresponding to the linear function ¢: F3 — F? defined by ¢(u,v) =
(4u — 3v, 6u + 2v, 3v).
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Solution. Reading off the coefficients of each component of ¢ gives our matrix.
Defining

it is easy to check that ¢ = L 4.

(3) Here are some important special cases of this correspondence between linear func-
tions and matrices:

La(x) = 22,5z, Tx) s A=1| 5

Lp(w,z,y,2) =w+2x — 4y + 2 s B:(l 2 —4 1)
Lo(t) =8t s C=(8).
We have formally defined the linear mapping L, associated with a matrix A, and

from the examples above, it may be clear how to go in the other direction to find the
matrix of a given linear function. Here is the formal definition:

Definition. The matrix associated with the linear function L: F™ — F™ is the
element A € M,,,(F) whose j-th column is L(e;) where e; is the j-th standard basis
vector for F™.

Examples. Consider the first two examples given above.

(1) Consider the linear function L: F? — F? given by L(z,y,2) = (20 —5y+4z,3r+
2z). Evaluate L at the three standard basis vectors for F®:

L(e1) = L(1,0,0) = (2,3)
L(es) = L(0,1,0) = (=5,0)
L(es) = L(0,0,1) = (4,2).

Use these three vectors to form a matrix:

2 —5 4
A:<3 0 2)'

Thus, L = L.
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(2) Consider the linear function ¢: F® — F? given by ¢(u, v) = (4u—3v, 6u+2v, 3v).
Then,
6(1,0) = (4,6,0) and 6(0,1) = (~3,2,3).

Place these vectors as columns to get the matrix

4 =3
6 2
0 3

We have, thus, created a bijective correspondence between linear function F™ — F™
and matrices in M, (F).

MATRICES FOR LINEAR FUNCTIONS V — W.

Let V and W be vector spaces with ordered bases B = (vy,...,v,) and D =
(wy, ..., wy), respectively. Taking coordinates with respect to these bases yields
isomorphisms ¢ : V. — F" and ¢p: W — F™. For instance, if v € V, we
write v = Y, a;v;, and then ¢g(v) := (ai,...,a,). Now suppose we have a lin-
ear function f: V' — W. So up to now we have three mappings we are considering:

v w

¢Bl2 Zl¢D
Ve £

We now describe how to use this diagram to create a linear function L: F™ — F™.
Since ¢p is an isomorphism, we can invert it and then define L by starting at F™,
applying ¢gl to go up the left-hand side of the diagram arriving at V', then applying f
to go to W, and finally using ¢p to go from W to F™. More succinctly, define:

L:=¢po fogg
In sum, we have the following important commutative diagram:

v — w

¢Bl2 2l¢v

Fr L Fm

Saying the diagram is commutative means the no matter which path we take from V
to I, we arrive at the same place, i.e.,

Lo¢s=¢pof.
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Now L is a mapping between tuples and, thus, has a matrix, as discussed at the
beginning of this lecture. To keep track of all of the input data, we use the following,
necessarily complicated, notation for this matrix:

[f]5 := matrix corresponding to L.

How do we compute this matrix? The algorithm for computing [f]? is summa-
rized in the diagram below:

vi 7 ()

v aw

:' ¢Bl2 zl% take coords. wrt. D
oo Y5, o

gj . __y j-thcol of [f]E

In words: since [f]% is a matrix, its j-th column is given by [f]Z(e;). By definition,

[f]5(ej) = ¢p o fodz'(e;) =dp (f (05 (e;)))
We have ¢p(v;) = e;. Hence, ¢5'(e;) = v; € V. So,
[f]5(ej) = ¢ (f (85'(¢))) = ¢p (f(v;))-

So here is the algorithm for computing [f]%:

To find the j-th column of [f]5 compute the coordinates of f(v;) with
respect to D = (wy, ..., wy,) for each v; € B = (vy,...,v,).

Example. Consider linear function f: R? — R? given by the matrix

A:<;§)

Thus, f(x,y) = (x + 4y, 2z + 3y. Using the notation above, we are letting V=W =
R2. Take the same ordered basis for both V' and W given by

B=D=((11),(~2,1)).

Find the matrix representing f with respect to this choice of bases for domain and
codomain.
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Solution. To conform with our earlier notation, we take v; = (1,1) and v = (=2, 1).
First apply f to each of the basis vectors for V:

flo) = (5,9)
flv2) = (2,-1).
Next, take the coordinates of these vectors with respect to the basis B for W:

(5,5) = 5v; +0- vy
(2,—1) =0- V1 — V2.
Hence,
¢s(v1) = (5,0)
op(ve) = (0,—1).

These are the columns for our matrix:

mg:(g _(1))

We arrive at the commutative diagram:

Rz L R2

¢Bl2 Zl(bzs
R? —L R?

Where L is the linear function corresponding to [f]%, i.e.,

Example. Consider the linear mapping
[ Rlz]<e = Rlz]<s
D — xTp.

Thus, f consists of multiplying a polynomial by x. Choose bases B = (1,z,2?%) for
the domain and D = (1,z, 2%, 23) for the codomain. Thus, ¢z(a+bx +cz?) = (a, b, c)
and ¢p(a + bz + cx® + dx3) = (a,b,¢,d). To find [f]E, compute the images of the
elements in B and express them as linear combinations of elements of D:

f)=2=0-14+1-2+0-2°+0-2°
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fx)=2>=0-14+0-2+1-2°+0-2°
f(x2):$3:0'1+O‘l‘—|—0~x2—|—1.x3_

Therefore,

[f(D)]p = (0,1,0,0)
[f(z)]p = (0,0,1,0)
[f(2*)]p = (0,0,0,1).

These vectors are the columns for our matrix:

0

=

iv)

I
OO =
o~ O O
—_ o O O
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Recall from last time that given a linear mapping f: V' — W and ordered bases B =

(U1, ..., vn) and D = (wy, ..., wy,) for V and W, respectively, we have a commutative
diagram
v L w

¢Bl2 Zl¢v
ot

where

L= ¢po ooy
The matrix representing L is denoted [f]5 and its calculation is displayed in the
following diagram:

Uj f(vy)
I V L} W
: ¢Bl2 zlqﬁp take coords. wrt. D
D

oo sy e
€ .., j-thcol of [f]§

We compute [f]E by finding each of its columns: To find the j-th column of [f]%
compute the coordinates of f(v;) with respect to D = (wy, ..., w,,) for each v; € B =
(U1, ..., Up).

Commutativity of the diagram says that for each v € V

/18 (¢5(v)) = ¢ (f(v)).

Recall our notation for the coordinates of a vector with respect to a ordered basis,
we can rewrite that above as



Week 6, Wednesday 87

Example. Consider the linear function

[ Rlz]<e = R[z] <3
p— xp+2p.
Choose ordered bases B = (1,z,2?) and D = (1,z,2% 23) for the domain and

codomain, respectively. Find the matrix representing f with respect to these bases,
and use the matrix to computer f(3 + 2z + z?).

Solution. Compute the images of the basis vectors in B:

f)=z-1+2(1) =2
fx)=a-z+2() =242
f(2?) =2 2* +2(2%) = 2° + 42
Next, find the coordinates of each of these with respect to D:
[z]p = (0,1,0,0)
[LC2 + 2]17 = (27 07 17 O)
[2® + 4]p = (0,4,0,1).

Therefore,

=

&9

I
OO = O

_— O N
— O RO

Here is a helpful way to think about this matrix:

The columns are labeled by the images of the basis vectors of the domain, and the
rows are labeled by basis vectors of codomain.

To find f(3 + 2x + x?), we first do the calculation using coordinates:

[f(3+2x+2%)]p = [fIF[3 + 2z + 27|



Week 6, Wednesday 88

020
104 3
010 )
00 1
4
N
| 2
1

It follows that
f(3+2x+2%) =4+ Tx + 227 + 23

Check using the definition of f:

f(34 2z +2°%) = 2(3 + 22 + %) +2(3 + 22 + %)’
= 3z +22° +2°) + 2(2 + 27)
=4+ Tz + 22" + 2°.

We would next like to prove that the rank of a linear function is equal to the rank of
any matrix representative of that function. Recall that the rank of a linear function
is the dimension of its image, and the rank of a matrix is the dimension of its column
space (which we saw is equal to the dimension of its row space—it is the number of
pivot columns in the reduced row echelon form of the matrix).

Proposition. Let VV and W be finite-dimensional vector spaces with ordered bases B
and D, respectively. Let f: V — W be a linear transformation. Then

rank(f) = rank([f]3).

Proof. We first consider the special case of a linear mapping L4: F"™ — F™ where A €
M sen. Thus, La(z) = Az. We saw last time that the image of L, is the span of the
column of A, i.e., the column space of A. Thus, the result holds in this case:

rank(L ) := dim(im(L,)) = dim(colspace(A)) = rank(A).

Now consider the general case. We have the commutative diagram

v L s w

¢Bl2 Zl¢’D

LA, pm
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where, in this case, A = [f]§. Since ¢ and ¢p are isomorphism and the diagram

commutes,

vank(L ) = dim(im(L4)) = dim(im(L 103)) = dim(im(épof)) = dim(im(f)) = rank(f)
We have seen that rank(L4) = rank(A). So the result follows, in general. O
Corollary. With notation as above, let A = [f]E € M,xn(F).

(a) f is surjective if and only if rank(A) = m = dim(W).
(b) f is injective if and only if rank(A) = n = dim(V).
(c) fis an isomorphism if and only if rank(A) = m = n.

Proof.

(a) The function f being surjective means that im(f) = W, which is equivalent to
saying that dim(im(f)) = dim(W), or that rank(f) = m, and we have just seen
that rank(f) = rank(A).

(b) We know that f is injective if and only if dim(ker(f)) = 0. By the rank-nullity
theorem,

n=dimV = dim(im(f)) + dim(ker(f)) = rank(f) + dim(ker(f)).

From the Proposition, we have rank(f) = rank(A). Therefore, dim(ker f) = 0 if
and only if rank(A) = n.

(c) This part follows from the previous two.

Composition of linear functions. Consider the linear functions
fiRY = R?
(x,y,z,w) = (20 — 2+ 3w,z —y + 4z2)
and

g: R* - R?
(s,t) — (bs —t,2t, —3s).



Week 6, Wednesday 90

Let’s compute the composition go f: R* — R3:

(9o )z y,z,w) =92z — 2+ 3w, v —y + 4z)

S t

=502r—2+4+3w)— (v —y+42),2(x —y +4z2), —3(2z — z + 3w))
= (92 +y — 9z + 15w, 22 — 2y + 8z, —6x + 3z — w).

The matrices associated with f and g (with respect to the standard bases) are, re-
spectively,

5 —1 9 1 -9 15
(?—(1] _1113)’ o 21, 2 -2 8 0
-3 0 -6 0 3 -9

What is the relation among these matrices? We will take up this question next time.
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The goal today is to formally define the algebraic structure for matrices (linear struc-
ture and multiplication). Multiplication of matrices corresponds with composition of
their corresponding linear transformations.

Composition of linear functions.

Proposition. Let f: V — W and g: W — U be linear functions. Their the compo-
sition go f: V — U is a linear function.

Proof. Let u,v € V and A € F. Then, since f and g are linear,

(g0 f)(u+Av) = g(f(u+ Av))

g9 (f(u) + Af(v))

9(f () + Ag(f(v))

= (g0 f)(u) +Ago f)v).

O

Let f: V. — W and g: W — U be a linear functions. We are interested in a matrices
representing the composition

gof:vLwiLu

Fix ordered bases B = (vy, ..., v,) for V., C = (wy, ..., wy) for W, and D = (uq, ..., Up)
for U. Let
P:=[gf and Q=[flz

Thus, P € M,«¢(F) and @Q € Myy,,. The relevant commutative diagram is

f

W >
¢Bl2 2l¢c Zldm

o9 pt P pm
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Let’s compute [go f]5. To find its j-th column, we find the coordinates of (go f)(v;)
with respect to the ordered basis D:

(90 F)(v;) = g(f(v;))
‘
=g <Z Qk:jwk> ( j-th column of Q)

‘
= Z Qrjg(w)
k=1

L m
= Z Quj (Z Pik“i) ( k-th column of P)
k=1 i=1

So the j column of [go f]% is given by the coefficients of the u; in the above some.
That means that the (i, j)-th entry of the matrix [g o f]%, i.e., the entry in its i-row
and j-th column is

([9 © f]?)ij = ZPikaj-
k=1

Definition. (Multiplication of matrices) Let P € M,,x,(F) and Q € My, (F), then
the product PQ € M,,«,(F) is defined by

¢
(PQ)ij = Z PixQrj-
k=1

Note: The formula says that the (i, j)-th entry of the product P@Q is the dot product
of the i-th row of P with the j-th column of ). That’s what one thinks about when
performing the calculation of P(Q) in practice.

Example. Here is an example of the product of two matrices. For instance, to find
the (2, 3)-entry of the product, we take the dot product of the second row of the first
matrix with the third column of the second:

5 -1\ /o5 o 4 3 9 1 -9 15
0 2 (] | Lo)=( 2-2 8 0
-3 0 —6 0 3 -9
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Recall the relevance of this computation: the first two matrices encode linear func-
tions g and f, and their product is a matrix encoding the composition g o f.

Proposition. Let f: V — W and g: W — U be a linear functions, and fix ordered
bases B = (v1,...,v,) for V., C = (wy,...,wy) for W, and D = (uy,...,uy) for U.
Then we have

lgo fl5 = 9lc /15

Proof. The proof is exactly the motivation we just gave for the definition of the matrix
product. O

We summarize some basic properties of matrix algebra.

Proposition. Let A be an m x n matrix, B an n X r matrix, both over a field F,
and A € F.

a

(2) AAB) = (\A)B = A(\B).
(b) A(BC) = (AB)C for all r x s matrices C.

(c) A(B+C)= AB+ AC for all n x r matrices C.

(d) (C+ D)A=CA+ DA for all r x m matrices C' and D.

Proof. We will just prove part (b), associativity of multiplication. So let C' be an r x s
matrix. We have

C))ij = Z A(BC)y,

£ (e(gne)

=3 Aw(BuCyy)

k=1 (=1

3

-

Ai,(BreClj)

1

~
Il

1

ﬁ
e
3 |

(Air Bie)Cj

=1

~

=1

o



Week 6, Friday 94

= Z (AB)iCl;
/=1

]

Warning. Matrix multiplication is not commutative, in general. First of all, if the
dimensions aren’t right, multiplication for both AB and BA might not make sense.

For instance, if
1 0 1 0 2
A_(?)—l) and B—(314>,

then AB is defined, but not BA.

However, even if AB and BA are both defined, it is usually not the case that AB =
BA. Try just about any example with 2 x 2 matrices to see this.

Definition. Let V' and W be vector spaces over a field F'. The set of linear transfor-
mations (homomorphisms) from V to W is denoted £(V, W) or Hom(V, W). It forms
a vector space with operations defined as follows: for f,g € Hom(V, W) and X\ € F,

(f+9)(w)=f(v)+g(v) and (Af)(v) =Af(v)
forall v e V.

Proposition. Let V and W be vectors spaces over F' of dimension n and m, respec-
tively. Then there is an isomorphism of vector spaces

Hom(V, W) — Mp,xn(F).

Sketch of proof. Choose ordered bases B and D for V and W, respectively. Then an
isomorphism is given by

Hom(V, W) = Myyn(F)
felfls.

This isomorphism will change to a different isomorphism if different bases are chosen.
m
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Last time, we defined matrix multiplication: if A is an m X p matrix and Bisap xn
matrix, then AB is the m X n matrix with i, j-entry

p
k=1

If m = n, then BA would also be defined, but it is usually that case that AB # BA.
Another peculiar thing is that for matrices, there are “zero divisors”, i.e., matri-
ces A, B such that AB = 0, but neither A nor B is a zero matrix. For example,

00 01y (00

0 1 00/ \0o0)/"
Diagonal matrices. The matrix A is a diagonal matriz if its only nonzero entries
appear along the diagonal: A;; = 0if < # j. This terminology makes sense regardless

of the dimensions of A, but is usually used in the case of square matrices, i.e., for the
case where A is an n X n matrix. In that case, we write

A = diag(ay, ..., ay,)

where A;; = a; fori=1...,n (and A;; = 0, otherwise.). For instance,
1 000
. 0400
diag(1,4,0,6) = 00 0 0
0 0 0 6

Identity matrices. The n x n identity matriz is the n X n matrix
I, = diag(1,...,1).

It has the following property: Al, = A and I,B = B whenever these products make
sense. For instance,

95
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<12 3) é? 8 _(1 23)
4 5 6 00 1 4 5 6
and
1 00 1 2 1 2
010 34 |=| 34
00 1 5 6 5 6

Inverses. Let A be an m X n matrix, and let B be an n x m matrix. If AB = I,,,
we say A is a left-inverse for B and B is a right-inverse for A. For example,

1 1
A:(éii) and B=|0 o0
0 1

Then
1 -1

111 10
AB:( ) 0 0 :< )
011 0 1 01

Hence, A is a left-inverse for B and B is a right-inverse for A. On the other hand,

1 -1 1 00
BA={(0 0 ((1) } 1)2 0 00
0 1 011

So B is not a left-inverse of A and A is not a right-inverse of B. (In fact, B does
not have a left-inverse and A does not have a right-inverse. This has to do with their
ranks not being high enough. The connection with solving systems of equations we
describe below explains that.)

We will mainly be interested in inverses for square matrices. Suppose that A isannxn
matrix. Suppose B is a right-inverse. So B is an n X n matrix such that AB = I,,.
Since matrix multiplication is not commutative, the value of BA is not immediately
clear. However, in fact, we have the following important result:

Theorem. Let A and B be n x n matrices. The following are equivalent:

(a) AB = 1I,.
(b) BA=1,.

If AB = I,, we say A and B are invertible and write A~! = B and B~! = A. The
following are equivalent:
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(i) A is invertible.
(ii) rank(A) =n.
(iii) The reduced echelon form of A is I,,.

The proof of this theorem will follow from an elegant algorithm for computing the
inverse of a matrix which we present below. The equivalence of the last to items on
the list is something we already know.

Calculating the inverse. Our problem now is to determine whether an inverse for a
matrix exists, and if so, to calculate that inverse. The methods we present here would
also be applicable to calculating right- and left-inverses of non-square matrices—it
boils down to solving systems of linear equations, after all—but we will concentrate
on the case of square matrices.

Example. Let

0 3 -1
A=|11 0 1
1 -1 0

0 3 -1 a b c 100
1 0 1 de fl=1010
1 -1 0 g h 1 0 01
So we need to find the entries a,b,...,i. We can break this into three problems:

0 3 -1 a 1

1 0 1 d|=1020

1 -1 0 g 0

0o 3 -1 0

1 0 1 e | =11

1 -1 0 h 0

0 3 —1 c 0

1 0 1 f1=10°0

1 -1 0 7 1

Equivalently, we need to solve three systems of linear equations:

Oz +3y —2=1



Week 7, Monday 98

r+0y+2=0
r—y+0z=0
Or+3y—2=0
r+0y+z2=1
r—y+0z=0
Ox+3y—2=0
r+0y+2=0
r—y+0z=1

Their augmented matrices would like:

_ O O

0 3 -1
, 1 0 1
1 -1 0

_ O W

-1
1
0

S = O

11 0
1|0 |, 1
00 1

— = O
= O W

The row operations needed to determine the solvability of this system are the same
in all three cases. So we can combine all three of these systems at once in one
“super”’-augmented matrix calculation:

0 3 —1]/1 0 0 1 0 1/0 10
1 0 11010210 3 -1/100
1 -1 0]/0 0 1 1 -1 0/00
1 0 1lo 1 0
LEnTef g 3 =111 0 0
0 -1 —1/0 —1 1
10 1/o1 o0
e g1 110 1 —1
BTN 0 3 —111 0
10 1]o 1 o0
IsorsTin ol g1 100 1 —1
00 —4|1 -3 3
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01 0o 1 0
0o 1 -1
~1/4 3/4 —3/4

7‘34)71”3/4
_—

o O
(el
— =

1 0 0] 1/4 1/4 3/4
nontm oo 1/4 1/4 —1/4
00 1|-1/4 3/4 —3/4

—
=)

r2—Tr2—7T3

Going back to the original systems of equations, we see that we need

N _ N—— N—

a 1/4 b 1/4 c 3/4
d | = 1/4 ], e | =1 1/4 |, d | =1 —-1/4
g —1/4 h 3/4 7 —3/4
In other words, the following matrix is a right-inverse for A:
1/4 1/4 3/4
1/4 1/4 —1/4
—-1/4 3/4 -3/4

The argument we’ve just given for a particular matrix easily generalizes to give the
following algorithm.

Algorithm for computing the inverse of a matrix. Let A be an n X n matrix.
Perform row operations on the “super”-augmented matrix [A | I,,] to compute the
reduced echelon form of A:

(A|In)—><[1|B>.

There are two possibilities: either A = I,, or not. If A = I,,, then B = A~!. Next,
we consider what happens when A # I,. Since B is derived by performing row
operations on [, we have rank(B) = rank(/,) = n. Thus, B cannot have a row of
zeros. If A # I,,, it must have a row of zeros. It follows that the system of equations
is inconsistent, and A has no inverse.

Now suppose that rank(A) so that
(A|I,) — (I, | B) (18.1)

and AB = I,,. Consider trying to find C' so that BC' = [,,. In this case, reverse the
row operations in (18.1) to get

(B[ 1) — (In|A),
and thus, C' = A, i.e., BA=1,.

In summary:
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e If A= I, (equivalently, rank(A) = n) then AB = BA=1I,. (So B = A" and
A=B1)

e If A # I, (equivalently, rank(A) < n), then A has a row of zeros and A has no
inverse.

In particular: A € M, is invertible if and only if rank(A) = n.
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Let V be a vector space with ordered basis @ = (vy,...,v,). Recall the coordinate
mapping
Go: V = F
V=a101 + 0 F apvp > (ar, .., ap).

In particular, we have ¢,(v;) = e;. Consider the special case where V' = F" so that
On: F" — F™,

and each v; is an element of F™. Since ¢, is now a mapping between tuples, is
represented by the n x n matrix M with the property that ¢,(v) = Mv for allv € F™.
The j-th column of M is ¢,(e;) for j =1,...,n.

Proposition. With notation as above, let P be the n x n matrix whose j-th column
isvjfor j=1,...,n. Then M = P~1.

Proof. If X is any matrix, then Xe; is the j-th column of X. So in our case, Pe; = v;.
Since the v; form a basis, the columns of P are linearly independent. So P has rank n
and is, thus, invertible. We have

_ —1 _ —1 _ —1
P@j—?)j = P P@j—P Uj = €j—P Vj.

Therefore, P~'v; = e; = ¢4 (v;) for all j. Since the v; form a basis for F", it follows
that P~'v = ¢, (v) for all v € F™. So P! is the matrix representing ¢, which means
that P~ = M. O

Next, consider a linear function
Lao: F" — F™

given by the m x n matrix A, i.e., La(v) = Av for all v € F™. Let a = (vy,...,v,)
and 5 = (wy,...,wy,) be ordered bases for F™ and F™ respectively. What is the
matrix representing L4 with respect to these new bases? We have the diagram

101
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Fn La Fm

L B
pr Lale pm

For ease of notation, let B := [L4]?. Our main goal today is to give a formula for
calculating B. We already know how to find the matrices representing the vertical
coordinate mappings: let P and () be the matrices whose columns are the elements
of a and f3, respectively, in order. Our diagram becomes

Fr A
P—lll le*1
| L
Therefore, B = Q= *AP. We summarize our result:

Proposition. Let A € M,,«,(F), and consider the linear mapping L: F™ — F™
determined by A, i.e., L(v) = Av for each v € F". Let a = (vy,...,v,) and f =
(wy,...,wy) be ordered bases for F™ and F™, respectively. Let P be the n x n
matrix with j-th column v; for j = 1,...,n, and let () be the m x m matrix with j-th
column w; for j = 1,...,m. Then the matrix B representing L4 with respect to the
bases o and [ is

B=Q AP,

and we have the commutative diagram

Fro—A pr

P71l2 2lQ71

B pm,

Example. Let Q be the field of rational numbers, and consider the linear function

[ Q@ —Q
(x,y,2) = (x 4+ 3y + 22,2y + 2),

1 3 2
A= < 0 21 ) ’
Choose the following bases for the domain and codomain:

Q*: a=1{((1,0,0),(1,1,0),(1,1,1))

with corresponding matrix
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Q2 : pB= <(0>1)7 (1v 1))

To find the matrix representing f with respect to these new bases, create matrices
whose columns are the basis vectors:

Calculate the inverse of @):

0 ]_ ]_ O 172 ]. ]. 0 1 rL—Tr1—"Tr2 1 0 _]_ ].
1 1]0 1 0 1/1 0 01 10/

The matrix representing f with respect to the bases o and f is then:

111
oy (-1 1N [1 32 (-1 -2 -3
B=d AP‘( 10)(021) 8(1)1 _( 1 4 6>'

This agrees with the fact that

£(1,0,0) = (1,0) = —1(0,1) + 1(1,1)
f(1,1,0) = (4,2) = —2(0,1) + 4(1,1)
F(1,1,1) = (6,3) = —3(0,1) + 6(1,1).

An important special case. The special case of the Proposition that arises most
frequently in practice is where m = n and a = . In other, words, we start with
a mapping L4: F" — F"™ represented by the matrix A, and we choose the same
new basis a = (vy,...,v,) for F™ for both the domain and codomain. We are then
interested in the matrix representing L, with respect to this new basis a. In that
case, let P be the matrix whose columns are vy, ..., v,, and we get the commutative
diagram

P

P*llz zlpfl

L pm
and the matrix we are looking for is

B =P AP
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We say B is formed by conjugating A.

Exercise. Say A, B € M, x,(F) are similar and write A ~ B if there exists an in-
vertible matrix P € M,,«,(F) such that P"'AP = B. Prove that ~ is an equivalence
relation. What does an equivalence class represent?

Example. Consider the real matrix

0
A= 1
1

=

1
1
0
What matrix represents the linear function L4: F® — I with respect to the ordered

basis a = ((1,1,1),(1,0,—1), (0,1, —1))?

SOLUTION. Use the vectors of av as columns to define the matrix

1 1 0
P=|11 0 1
1 -1 -1

Compute the inverse of P using our algorithm (omitted):

1 1 1
3 3 3 r 1 1
P—l — % _% _% = — 2 —1 _1
12 1 -1 2 1

3 3 73

Then the matrix representing L4 with respect to the ordered basis « is

2 0 0
B=P'AaP=[0 -1 0
0 0 -1

Notice that the matrix representing L, in the example becomes the much simpler
diagonal matrix after a change of basis. We can then apply an important trick to
compute A* for all integers k. First note that

2 1 1 2 3 3 6 5 5 10 11 11
A2=[1 2 1 ]|, A=(3 23|, A'=|[56 5|, A= 11 10 11
112 3 3 2 55 6 11 11 10

What happens in general? Here is the trick that can be applied here:
B* = (PT'AP)*
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= (P'AP)(P'AP)(P 'AP)--- (P'AP)(P'AP)

(& J/
-~

k times

= PA(PPYHYA(PPYHYAPPY) ... (PPYA(PP Y AP
= P tAFP.

Since B¥ = P71A¥P_ we can solve for A* by multiply both sides of the equality on
the left by P and on the right by P~! to get

1 1 0 2 0 o0\”" ) 1 1 1
AF=pPB¥P~'=11 0 1 0 -1 0 3 2 —1 —1
1 -1 —1 0 0 —1 -1 2 -1
1 1 0 ok 0 0 ) 1 1 1
k
=1 o 1 0 (—1) 0 3 2 -1 -1
1 -1 —1 0 0 (—1)* -1 2 -1
. ok L 2(=1)F 28— (=1)F 2k —(—1)F
=3 28 — (=% 24 2(-1)F 2k — (1)
2k — (—1)F 2k —(=1)F 2k 4 2(—1)*
b b
1 a
:g b a b
b b a

where for k =1,2,3, ..

°9

2k 1+ 92 if k is even 2k —_ 1 if k is even
a= and b=
2k — 92 if kis odd 2F +1 if k is odd.

Exercise. Show that 2¥ 2 and 2* 4 1 are divisible by 3 for k =1,2, ...



Week 7, Friday: Determinants

Definition. The determinant is a multilinear, alternating function of the rows of
square matrix, normalized so that its value on the identity matrix is 1.

To explain this terminology, start with the fact that the determinant is a function of

the form
det: My, (F) — F.

Given a square matrix A € M, «,(F) with rows r1,...,7r, € F", we write det(A) =
det(ry,...,7y), i.e., we consider the determinant as a function of the rows of A. The
determinant function has the following properties:

(a) Multilinear. The determinant is a linear function with respect to each row. Thus,
if r1,...,r, are the row vectors of A (elements of F™), r} is another row vector,
and A € F, then

!
det(r, ..oy Tict, AT+ T Ty ooy Tn) = A det(ry, oo i1, Ty Tig s e ooy T

/
+ det(rl, ey i1, T Ty - ,T’n).

The above expresses the fact that, in particular, the determinant is linear with
respect to the i-th row.

(b) Alternating. The determinant is zero if two of its arguments are equal:
det(ry,...,r,) =0
if r; = r; for some i # j.
(¢) Normalized. det(l,) = det(ey,...,e,) = 1.

We will prove the following theorem later:

Theorem. For each n > 0, there exists a unique determinant function.
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For now we will accept this theorem on faith and explore some of the consequences.
The following proposition shows that we can compute the determinant through row
reduction.

Proposition 1. (Behavior of the determinant with respect to row operations.)
Let A, B € Mxn(F).

(a) If B is obtained from A by swapping two rows, then det(B) = — det(A).

(b) If B is obtained from A by scaling a row by a scalar A, then det(B) = Adet(A)
(even if A = 0).

(c) If B is obtained from A by adding a scalar multiple of one row to another row,
then det(B) = det(A).

Proof. For part (a), let ry,...,7, € F™ be the rows of A. For ease of notation, we
will assume that B is obtained from A by swapping the first two rows. The argument
we present clearly generalizes to the case of swapping arbitrary rows. Replace the
first two rows of A with r; + ry to obtain a matrix whose determinant is 0 by the
alternating property:

0 =det(r; + ro,r1 + 172,73, ..., Th).
Expand my multilinearity to get:

Ozdet(rl + 1o, “|—7"277"3u'--77"n)
= det(h,h + 19,73, ... ,'r’n) + det(rg,'rl + 7o, T3, ... 77’n)
=det(ry,r1,73, ..., 1) +det(ry,re, 3, .., 1)
+ det(rq, 11,73, ..., rn) + det(ro, 7o, r3, ... 1)
=0+ det(A) + det(B) + 0.

It follows that det(B) = — det(A).

Part (a) follows immediately from the fact that the determinant is linear with respect
to each row:

det(r1, .y Tim 1, APy Tigty oo oy 1) = AAet(ry, o i1, Ty Tig 1y e oy T

For Part (c), we use multilinearity and the alternating property. For ease of notation,
we’ll consider the case where B is obtained from A by adding a multiple of row 1 to
row 2:

det(B) = det(r1, A\ry + 19,73, ..., 1)
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= Adet(ry, 71,73, ..., 7)) +det(ry, 79,73, ..., Ty)
=0+ det(r,72,73, ..., 70)
= det(A).

]

Corollary. Let A € M, «,(F), and let E be the reduced row echelon form of A.
Then there exists a non-zero k € F such that det(A) = kdet(E).

Proof. The proof is immediate from Proposition 1. O]

Example 1. Here we compute the determinant of a 2 x 2 matrix using the fact that
the determinant is a mult