Math 111 lecture for Friday, Week 13

Logistic growth model. Let P(t) be the size of a population at time ¢. The logistic
growth model is the differential equation

P'(t) = rP(t) ( - %) .

It says the growth in population is proportional to the size of the existing population
with an extra factor to account for limited resources. When the population is small
(when P is much smaller then K), we see P’ ~ rP, which we've already seen leads
to exponential growth. However, as P gets close to K over time, the factor 1 — P/ K
slows the growth.

Solution. The equation is separable and can be solved using integration using the
technique of partial fractions.
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The technique of partial fractions requires us to find constants A and B such that
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Comparing numerators in equations (1) and (2), we need to adjust A and B so that
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Or, rearranging:
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We get an equality if
A
A=1 d ——=+B=0.
an K +



So A=1and B =1/K. Therefore we can write (double-check!):
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Back to solving the differential equation:
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For the left-hand side, use equation (3):

P'(t) pP't)  P')/K
/P(t) (1-22) dt:/ P() T 1- 2@ o

P 1 [ P
dt + — dt
P T K / 170

P'(t)
lnP K/ t

For the remaining integral, let u = 1—P(t)/K. Then du = —+P'(t) dt, and —K du =
P'(t) dt. Therefore,
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Putting this all together:
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= rt + constant.
Exponentiate both sides to get
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for some positive constant a. We now need to solve this equation for P(t):
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We would like to express the arbitrary constant a in terms of the initial population:
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= P(0)K = aK — P(0)a = a(K — P(0))



Substituting this expression for a and simplifying gives the final form for the solution
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P(t) =

It’s easy to see from this equation that the limiting population is

tlgglo P(t) = K.
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Graph of P(t) with K = 1000 and P(0) = 10 and two different growth rates: » = 0.5
in red and r = 0.2 in blue.

Exercise. A state game commission releases 40 elk into a game refuge. After 5 years,
the elk population is 104. The commission believes that the refuge can support no
more than 4000 elk. Use a logistic model to predict the elk population in 15 years.

SOLUTION: The carrying capacity is K = 4000, so the logistic model in this situation

is P'(t) = rP(t) (1 B %)

where we can determine r from the additional information we're given. The initial
population size is P(0) = 40. From the solution to the logistic equation we derived
above, we have
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We are given that P(5) = 104. Therefore,
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Solve for r:
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= r=0.194.

So our model for this population is
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So we would predict the population after 15 years to be

4000
P(15) = 1+ 99e—019415 626.
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