
Math 111 lecture for Friday, Week 11

The inverse function theorem and exponentials

Definition. Functions f and g are inverses of each other if

f(g(x)) = x and g(f(x)) = x.

Examples.
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Graphs of inverse functions f(x) = 2x and g(x) = 1
2
x.
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Graphs of inverse functions f(x) = x2 and g(x) =
√
x.

Definition. A function f is one-to-one if x 6= y implies f(x) 6= f(y).

So f is one-to-one if it does not send two points to the same point. Graphi-
cally, this means that no horizontal line will meet the graph of f more than
once.

Example. The function f(x) = x2 as a function of the whole real number
line is not one-to-one. For instance f(1) = f(−1). Graphically, there exist
horizontal lines meeting the graph of f in more than one point:
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f(x) = x2 fails the horizontal line test on (−∞,∞).

However, if we restrict f(x) = x2 to be a function on [0,∞), it is one-to-one:
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f(x) = x2 passes the horizontal line test on [0,∞).

Proposition. If the function f is one-to-one, it has an inverse.

Example. Considering f(x) = x2 as a function on [0,∞), then it has an
inverse: g(x) =

√
x.

Theorem. (Inverse function theorem, (IFT).) Suppose f is differentiable,
and suppose f has an inverse g. Then g is differentiable and

g′(x) =
1

f ′(g(x)

provided f ′(g(x)) 6= 0.

Proof. We can give a proof of part of this theorem. Suppose g is differen-
tiable. Since f and g are inverses, we have f(g(x)) = x. Take derivatives
and apply the chain rule:

1 = (x)′ = (f(g(x))′ = f ′(g(x))g′(x).

So 1 = f ′(g(x))g′(x). Solve for g′(x) to get

g′(x) =
1

f ′(g(x))
.

�

Example. Let’s check the IFT with an example. The functions f(x) = x2

and g(x) =
√
x are inverse functions on [0,∞). We have

g′(x) = (x1/2)′ =
1

2
x−1/2 =

1

2
√
x
.
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Let’s compare this with 1/f ′(g(x)). We have f ′(x) = 2x, and g(x) =
√
x. So

1

f ′(g(x))
=

1

f ′(
√
x)

=
1

2
√
x
.

The exponential function. Recall that ln(x)′ = 1/x > 0 for all x > 0.
Thus, ln(x) is always increasing. In particular, this means that ln(x) has an
inverse function. By definition, the exponential function,

exp(x)

is the inverse of ln(x). In other words,

exp(ln(x)) = ln(exp(x)) = x.
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Graphs of inverse functions ln(x) and exp(x).

Properties of the exponential function.

1. exp(0) = 1.

Proof. Since ln(1) = 0 and exp(ln(x)) = x for all x > 0, we have

exp(0) = exp(ln(1)) = 1.

�
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2. exp(x + y) = exp(x) exp(y).

Proof. Recall that ln(xy) = ln(x) + ln(y) for all x, y > 0. Therefore,

ln(exp(x) exp(y)) = ln(exp(x)) + ln(exp(y)) = x + y.

So ln(exp(x) exp(y)) = x+y. Apply the exp function to both sides and
use the fact that it is inverse to ln:

ln(exp(x) exp(y)) = x + y =⇒ exp(ln(exp(x) exp(y))) = exp(x + y)

=⇒ exp(x) exp(y) = exp(x + y).

�

3. exp′(x) = exp(x).

Proof. This follows from the inverse function theorem, but we can see
it directly from the chain rule:

ln(exp(x)) = x =⇒ (ln(exp(x)))′ = (x)′

=⇒ 1

exp(x)
exp′(x) = 1

=⇒ exp′(x) = exp(x).

�

The number e and exponentiation. We define the number e, Euler’s
constant, as follows:

e := exp(1).

We would like to show that from this one simple definition it follows that

ex = exp(x) (1)

for all real numbers x. The problem arises is understanding what is meant
by taking a number to a power. We break this up into cases:

Case 1. For the exponent n = 0, we take e0 = 1, by definition. We have
already seen that since ln(1) = 0, we have exp(0) = 1. So in that case,
equation (1) holds: e0 = exp(0).
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Case 2. For the exponent n = 1, we have e1 = e, by definition of exponen-
tiation, and we have e = exp(1), by definition of e. So the equation holds
here, too.

Case 3. Suppose n = 2, 3, . . . Here, we repeatedly use the fact we saw earlier:
since the logarithm converts products to sums, ln(xy) = ln(x) + ln(y), it
follows that the exponential function converts sums to products, exp(x+y) =
exp(x) exp(y). It follows that

e2 = e · e = exp(1) exp(1) = exp(1 + 1) = exp(2)

e3 = e · e · e = exp(1) exp(1) exp(1) = exp(1 + 1 + 1) = exp(3)

e4 = e · e · e · e = exp(1) exp(1) exp(1) exp(1) = exp(1 + 1 + 1 + 1) = exp(4),

and so on.

Case 4. What about negative exponents? For n = 1, 2, 3, . . . , we would
like to show that e−n = exp(−n). First: what does e−n mean? Answer: by
definition

e−n = 1/en.

Substituting in the definition of e, then, what we need to show is that

exp(−n) =
1

en
=

1

exp(n)
.

(The second equality above follows since we have already established that en =
exp(n) for n = 0, 1, 2, . . . ) Here is a nice argument to establish that fact (re-
calling that exp(0) = 1):

1 = exp(0) = exp(n− n) = exp(n + (−n)) = exp(n) exp(−n).

So 1 = exp(n) exp(−n), and the result follows.

Case 5. What about rational exponents? Consider the fraction a/b where a
and b are integers. By definition, ea/b is the number such that

(ea/b)b = ea.

For instance, multiplying e1/2 by itself gives e. For a warm-up, we will
show that e1/2 = exp(1/2). This just means that we need to show that
multiplying exp(1/2) by itself should give e. We get that from the following
calculation (again involving the formula exp(x + y) = exp(x) exp(y)):

exp(1/2) exp(1/2) = exp(1/2 + 1/2) = exp(1) = e.
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What about e2/5, the number which when multiplied by itself 5 times gives e2.
Here we have

exp(2/5) exp(2/5) exp(2/5) exp(2/5) exp(2/5) = exp(2/5 + 2/5 + 2/5 + 2/5 + 2/5)

= exp(2)

= e2.

The last step follows from Case 3, above. We have just shown that exp(2/5) =
e2/5. In general, for an arbitrary fraction a/b, we have

exp(a/b) exp(a/b) · · · exp(a/b)︸ ︷︷ ︸
b times

= exp(a/b + · · ·+ a/b︸ ︷︷ ︸
b times

)

= exp(a)

= ea.

This shows that exp(a/b) = ea/b: multiplying the number exp(a/b) by itself b
times gives ea.

Case 6. The final case is where x is an arbitrary real number. We have seen
that ex = exp(x) when x is an integer or a fraction. Is it true that ex = exp(x)
when x is an irrational number (those are the only real numbers we haven’t
considered). The problem here is: what is the definition of ex when x is an

irrational number? What does e
√
2 or eπ mean? There is a good chance that

you have not seen a definition of exponentiation by an irrational number.
We make the following definition:

Definition. Let x be any real number, and let e = exp(1). Then we define ex

by
ex := exp(x).

The utility of this definition is that for cases 1–5, where we have a prior
notion of the meaning of ex, this definition agrees with the usual definition,
but then it extends the meaning of exponentiation to the case of irrationals,
as well.

To finish the story, we define exponentiation, in general:

Definition. Let a and x be real numbers with a > 0. Then

ax := ex ln(a) = exp(x ln(a)).
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Example. 2π = eπ ln(2) ≈ 8.82.

Some consequences of the definition:

For all real numbers x and y,

• ax+y = axay,

• (ax)y = axy,

•
ax

ay
= ax−y,

• ln(ax) = x ln(a).
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