
Math 111 lecture for Friday, Week 10

Finding antiderivatives mean reversing the operation of taking derivatives. Today
we’ll consider reversing the chain rule and the product rule.

Substitution technique. Recall the chain rule:

(f(g(x)))′ = f ′(g(x))g′(x).

In terms of antiderivatives, this means∫
f ′(g(x))g′(x) dx = f(g(x)) + c.

For example, ∫
10(x3 + 4x + 2)9(3x2 + 4) dx = (x3 + 4x + 2)10 + c.

Here, f(x) = x10 and g(x) = x3 + 4x + 2.

The technique of substitution is a formalism that helps in detecting the presence of
the chain rule. Here’s how it works. We know that∫

f ′(g(x))g′(x) dx = f(g(x)) + c.

Define u(x) = g(x). Then
du

dx
= g′(x).

We abuse this notation by writing

du = g′(x)dx

and then substitute into the integral to get∫
f ′(g(x))g′(x) dx =

∫
f ′(u)du.

Then, by the FTC, we get ∫
f ′(u) du = f(u) + c.

Substituting back, using u = g(x), we get∫
f ′(g(x))g′(x) dx =

∫
f ′(u) du = f(u) + c = f(g(x)) + c.
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Example. Consider the indefinite integral∫
3x2(x3 + 5)6 dx.

You may be able to immediately see how the chain rule applies. If not, as a general
rule of thumb, look for a part of the integrand (the function you’re integrating) that
is “inside” another function and substitute. In this case, an obvious choice is to let

u = x3 + 5.

Then using our notation from above,

du = 3x2 dx.

Substitute and integrate:∫
3x2(x3 + 5)6 dx =

∫
(x3 + 5︸ ︷︷ ︸

u

)6 3x2 dx︸ ︷︷ ︸
du

=

∫
u6 du =

1

7
u7 + c.

To get the final solution, substitute back:∫
3x2(x3 + 5)6 dx =

1

7
(x3 + 5)7 + c.

Example. Integrate
∫
x4 cos(x5) dx. The “inside” function here is u = x5. We get

du = 5x4 dx.

Therefore,

x4 dx =
1

5
du.

Now substitute: ∫
x4 cos(x5) dx =

∫
cos(x5)x4 dx

=

∫
1

5
cos(u) du

=
1

5
sin(u) + c

=
1

5
sin(x5) + c.
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Example. Here is a trickier example:∫
x
√

1 + 5x dx.

The inside function is u = 1 + 5x. So

du = 5 dx ⇒ dx =
1

5
du.

We now need to substitute into the original integral to obtain an integral solely in
the variable u—we need to get rid of all of the xs. Making a partial substitution
in x
√

1 + 5x dx, we would get

x
√

1 + 5x dx =
1

5
x
√
u du,

but we need to get rid of the x remaining in this expression. Here’s how: since u =
1 + 5x, we can solve for x in terms of u:

u = 1 + 5x ⇒ x =
1

5
(u− 1).

Thus,

x
√

1 + 5x dx =
1

5
x
√
u du =

1

25
(u− 1)

√
u du.

So ∫
x
√

1 + 5x dx =

∫
1

25
(u− 1)

√
u du

=

∫
1

25
(u− 1)u1/2 du

=
1

25

∫
(u− 1)u1/2 du

=
1

25

∫
(u3/2 − u1/2) du

=
1

25

(
2

5
u5/2 − 2

3
u3/2

)
+ c

=
1

25

(
2

5
(1 + 5x)5/2 − 2

3
(1 + 5x)3/2

)
+ c.
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WARNING. Be careful with limits of integration when using substitutions. For
example, using the substitution u = x5 + 1 and du = 5x4 dx, we get∫ 1

0

x4(x5 + 1)6 dx =
1

5

∫ 2

1

u6 du =
1

35
u7

∣∣∣∣2
1

=
1

35
(27 − 17) =

127

35
.

The limits of integration change after the substitute since u = 1 when x = 0 and u = 2
when x = 1.

As an alternative, you could first just compute the indefinite integral (using the same
substitution):∫

x4(x5 + 1)6 dx =
1

5

∫
u6 du =

1

35
u7 =

1

35
(x5 + 1)7 + c.

Then use the FTC: ∫ 1

0

x4(x5 + 1)6 dx =
1

35
(x5 + 1)7

∣∣∣∣1
0

=
127

35
.

Integration by parts. The integration technique called integration by parts origi-
nates from the product rule:

(uv)′ = u′v + uv′.

Integrate: ∫
(uv)′ =

∫
(u′v + uv′) =

∫
u′v +

∫
uv′.

Now,
∫

(uv)′ is the indefinite integral; so we must find a function whose derivative
is (uv)′, but that’s easy: uv. So

uv =

∫
u′v +

∫
uv′.

We now modify the notation to specify the argument of the function (the independent
variable):

u(x)v(x) =

∫
u′(x)v(x) dx +

∫
u(x)v′(x) dx.

Using the notation du = u′(x)dx and dv = v′(x)dx, we can write

uv =

∫
v du +

∫
u dv.
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Rearranging, we get the form that is useful for integration:∫
u dv = uv −

∫
v du.

The utility of this formula is that it might be that
∫
v du is an easier integral

than
∫
v du.

Example. Compute
∫
xex dx? Note that since (ex)′ = ex, it’s trivial to integrate ex:

we have
∫
ex dx = ex + c. To integrate xex by parts, we need to choose u and dv

appropriately. The following choice works:

u = x

dv = ex dx.

We then need to find du and v:

u = x du = dx
dv = ex dx v = ex.

Applying the boxed formula, above:∫
xex dx =

∫
u dv

= uv −
∫

v du

= xex −
∫

ex dx

= xex − ex + c.

It is easy to check that the solution is correct: differentiate xex− ex + c, and you will
get xex. (You’ll need the product rule, naturally.)

We can then use the antiderivative we’ve found to compute definite integrals. For
example, ∫ 1

0

xex dx = (xex − ex)

∣∣∣∣1
0

= (1 · e1 − e1)− (0 · e0 − e0)

= (e− e)− (0− 1)

= 1.
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Example. Compute
∫
x cos(x) dx. By parts:

u = x du = dx
dv = cos(x) dx v = sin(x).

Then ∫
x cos(x) dx =

∫
u dv

= uv −
∫

v du

= x sin(x)−
∫

sin(x) dx

= x sin(x) + cos(x) + c.

Check:

(x sin(x) + cos(x) + c)′ = (x sin(x))′ + cos′(x)

= (sin(x) + x cos(x))− sin(x)

= x cos(x).

Challenge. Compute
∫
ex cos(x) dx by parts.
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