
Math 111 lecture for Monday, Week 9

The integral. Now consider an arbitrary function f defined on an inter-
val [a, b]. We would like to estimate the area under f by imitating what we
just in the previous lecture with f(x) = x/2, above. Before, we divided the
interval in question into n parts of equal length for convenience. In general,
we allow division into arbitrary length intervals. To that end pick n+ 1 arbi-
trary points in the interval [a, b], the first of which is a and the last of which
is b:

a = t0 < t1 < t2 < · · · < tn = b.

Here is a picture of the subdivision of [a, b] into n parts (the dots connote an
arbitrary number of tick marks):

a = t0 t1 t2 ti−1 ti tn−2 tn−1 tn = b

So we have divided the interval into subintervals. The first subinterval
is [t0, t1] = [a, t1]. The second subinterval is [t1, t2], and so on. In general,
the i-th subinterval is [ti−1, ti].

The values the function f takes on the i-th interval is denoted f([ti−1, ti]):

f([ti−1, ti]) = {f(x) : ti−1 ≤ x ≤ ti} .

This set is called the image of [ti−1, ti] under f . For instance, if the function
is f(x) = x/2 and the i-th interval is [2, 2.8], then f([2, 2.8]) = [1, 1.4]. We
can picture the image as the set of y-values of the function as x varies along
the i-th interval:
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To estimate the area under f we create rectangles based on each subinterval.
To overestimate the area, we will take the height of each rectangle to be the
maximum value of the function on its interval, and to underestimate the area,
we will take the height to be the minumum value. We introduce notation for
these heights:

Mi = lub f([ti−1, ti]) and mi = glb f([ti−1, ti]).

So Mi is the least upper bound of all function values at points in the i-th
subinterval, and mi is the greatest lower bound. This means

mi ≤ f(x) ≤Mi

for all x satistfying ti−1 ≤ x ≤ ti.

Time out for a technical point. Notice that we are using least upper
bounds and greatest upper bounds instead of just taking the maximum value
and the minimum value. There is a reason for that. Each subinterval is a
closed bounded interval. If f is continuous, then the extreme value theorem
guarantees that f has a maximum and a minimum value on the interval.
However, if f is not continuous, it may not achieve its maximum or its
minimum value on the interval. The set of function values will have a least
upper bound and a greatest lower bound, however, as long as we assume the
set of function values is bounded, which we will do from now on:

Assumption: From now on, we will assume that the set of values for f on
the interval [a, b] is bounded (both above and below), i.e.,

f([a, b]) = {f(x) : a ≤ x ≤ b} ,

is a bounded set of real numbers.

Back to defining the integral. We will next concentrate on creating
an overestimate for the area under f . On the i-th subinterval, create a
rectangle Ri with base [ti−1, ti] and height Mi.
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ti−1 ti

Ri

Rectangle on the i-th subinterval, overestimating the area.

We have
area(Ri) = height× base = Mi(ti − ti−1).

Adding up the areas of these rectangles gives an overestimate of the area
called the upper sum for f with respect to the partition P = {t0, t1, . . . , tn}:

U(f, P ) := area(R1) + area(R2) + · · ·+ area(Rn)

= M1(t1 − t0) + M2(t2 − t1) + · · ·+ Mn(tn − tn−1)

=
n∑

i=1

Mi(ti − ti−1).

Below we illustrate the rectangles for an upper sum for some function f on
a partition with 7 points (and, consequently, 6 subintervals):
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An upper sum U(f, P ) for some function f .

To get underestimates of the area, we repeat the above but now taking the
heights of the rectangles to be the greatest lower bounds, mi. Denote these
rectangles by ri. We define the lower sum for f with respect to the partition
P to be the sum of the areas of these rectangles:

L(f, p) := area(r1) + area(r2) + · · ·+ area(rn)

= m1(t1 − t0) + m2(t2 − t1) + · · ·+ mn(tn − tn−1)

=
n∑

i=1

mi(ti − ti−1).

The following picture shows the rectangles for the lower sum of some func-
tion f with respect to some partition P with 7 points (and 6 subintervals):
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A lower sum L(f, P ) for some function f .

For each partition P of [a, b], we get an upper sum—an overestimate of
the area under f and a lower sum—an underestimate of the area. We first
concentrate on the upper sums. Make a set consisting of all possible upper
sums as we vary the partition:

{U(f, P ) : P a partition of [a, b]} .

This will, in general, be a set consisting of an infinite number of numbers, one
for each of the infinite number of partitions P , and each an overestimate of
the area we want. For any given choice of function f , it will almost certainly
not have a smallest element. However, it turns out it does have a greatest
lower bound (see Math 112). This is in some sense or “best overestimate”.
Officially, it is known as the upper integral for f :

U

∫ b

a

f := glb {U(f, P ) : P a partition of [a, b]} .

Similarly, we get one lower sum for each partition we choose, and we can
consider the set of all possible underestimates of the area as the partition

5



varies:
{L(f, P ) : P a partition of [a, b]} .

These are all underestimates, and in general there will be no greatest element
in this set. However, it does have a least upper bound, and we define this to
be the lower integral for f :

L

∫ b

a

f := lub {L(f, P ) : P a partition of [a, b]} .

So now we have a best overestimate and a best underestimate, and as might
be expected (and proved in Math 112), we have

L

∫ b

a

f ≤ U

∫ b

a

f.

For some unhappy functions, it turns out that these two numbers are not
equal, and in that case we say f is not integrable. On the other hand, if they
are equal, we say f is integrable on [a, b], and in that case, the common value
is the integral of f on [a, b]:∫ b

a

f := L

∫ b

a

f = U

∫ b

a

f.

Not every function is integrable, but we have the following:

Theorem. If f is a continuous function on the interval [a, b], then it is
integrable.

Proof. Math 112. �

Summary of essential vocabulary. Let f be a function defined on a
closed interval [a, b].

1. The function f is bounded if the set of numbers f(x) for a ≤ x ≤ b is
bounded above and below, i.e., f([a, b]) is bounded.

2. A partition P of [a, b] is a finite set of points

t0 < t1 < · · · < tn

with t0 = a and tn = b and with n some positive integer. We write P =
{t0, t1, . . . , tn}. For the following, fix such a partition P .
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3. The subintervals for P are the intervals

[t0, t1], [t1, t2], . . . , [tn−1, tn].

There are n subintervals in total. The i-th one is [ti−1, ti]. Each of
these intervals is contained in the interval [a, b]. The length of the i-th
subinterval is ti − ti−1.

4. We are going to estimate the area under the graph of f with rectangles
based on each subinterval. Their heights are determined by the height
of the graph of f :

Mi := lub f([ti−1, ti])

mi := glb f([ti−1, ti]).

If f is continuous, these numbers are the maximum and minimum val-
ues of f on the i-th subinterval.

5. The partition P determines an overestimate and an underestimate for
the area under the function f . These are called the upper and lower
sums for f with respect to P :

U(f, p) =
n∑

i=1

Mi(ti − ti−1) = M1(t1 − t0) + M2(t2 − t1) + · · ·+ Mn(tn − tn−1)

L(f, p) =
n∑

i=1

mi(ti − ti−1) = m1(t1 − t0) + m2(t2 − t1) + · · ·+ mn(tn − tn−1).

The i-th summand is the area of a rectangle whose base is the i-th
subinterval.

6. For each partition P that we choose, we get an upper sum (overesti-
mate) and a lower sum (underestimate) for the area under f . In an
attempt to get the best over- and underestimates, we define the upper
and lower integrals of f on [a, b]:

U

∫ b

a

f := glb {U(f, P ) : P a partition of [a, b]}

L

∫ b

a

f = lub {L(f, P ) : P a partition of [a, b]} .
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7. Finally, if the upper and lower integrals are equal (as they are when f
is continuous), we define the integral of f to be their common value:∫ b

a

f := L

∫ b

a

f = U

∫ b

a

f.
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